Time filter

Source Type

North Chicago, IL, United States

Rosalind Franklin University of Medicine and Science is a non-profit, private, interprofessional graduate school located in North Chicago, Illinois. It has more than 2,000 students in five schools: the Chicago Medical School, the College of Health Professions, the College of Pharmacy, the School of Graduate and Postdoctoral Studies, and the Dr. William M. Scholl College of Podiatric Medicine.The university is named for Rosalind Franklin, the DNA crystallographer. Photo 51, Dr. Franklin's X-ray diffraction pattern for B-DNA, was pivotal in the history of biology in the twentieth century, and this photograph is the basis for the university's seal and logo.The university offers over 29 study programs in graduate health-related subjects, including PhD programs for medical and basic research.Facilities include a multi-media laboratory, a virtual microscopy lab, a simulation lab, and the Education and Evaluation Center, with high-tech opportunities for education and research.The University is located to the west of the Naval Station Great Lakes and to the south of the Captain James A. Lovell Federal Health Care Center. Wikipedia.

Dundr M.,Rosalind Franklin University of Medicine and Science
Current Opinion in Cell Biology | Year: 2012

It has become increasingly apparent that gene expression is regulated by the functional interplay between spatial genome organization and nuclear architecture. Within the nuclear environment a variety of distinct nuclear bodies exist. They are dynamic, self-organizing structures that do not assemble as pre-formed entities but rather emerge as a direct reflection of specific activities associated with gene expression and genome maintenance. Here I summarize recent findings on functions of some of the most prominent nuclear bodies, including the nucleolus, Cajal body, PML nuclear body, Polycomb group body and the 53BP1 nuclear body. The emerging view is that their organization is orchestrated by similar principles, and they function in fundamental cellular processes involved in homeostasis, differentiation, development and disease. © 2012 Elsevier Ltd. Source

Katara G.K.,Rosalind Franklin University of Medicine and Science
Oncogene | Year: 2014

Macrophage polarization contributes to distinct human pathologies. In tumors, a polarized M2 phenotype called tumor-associated macrophages (TAMs) are associated with promotion of invasion and angiogenesis. In cancer cells, vacuolar ATPase (V-ATPase), a multi-subunit enzyme, is expressed on the plasma/vesicular membranes and critically influences the metastatic behavior. In addition, the soluble, cleaved N-terminal domain of a2 isoform of V-ATPase (a2NTD) is associated with in vitro induction of pro-tumorigenic properties in monocytes. This activity of a2 isoform of V-ATPase (a2V) caused us to investigate its role in cancer progression through the evaluation of the immunomodulatory properties of a2NTD. Here, we present direct evidence that surface expression of V-ATPase is associated with macrophage polarization in tumor tissue. Macrophages from BALB/c mice (peritoneal/bone marrow derived) were stimulated with recombinant a2NTD in both ex vivo and in vivo systems and evaluated for TAM characteristics. a2V was highly expressed in tumor tissues (breast and skin) as well as on the surface of tumor cell lines. The a2NTD-stimulated macrophages (a2MΦ) acquired TAM phenotype, which was characterized by elevated expression of mannose receptor-1, Arginase-1, interleukin-10 and transforming growth factor-β. a2MΦ also exhibited increased production of other tumorigenic factors including matrix metalloproteinase-9 and vascular endothelial growth factor. Further, a2MΦ were cocultured with mouse B-16F0 melanoma cells for their functional characterization. The coculture of these a2MΦ subsequently increased the invasion and angiogenesis of less invasive B-16F0 cells. When cocultured with naive T cells, a2MΦ significantly inhibited T-cell activation. The present data establish the role of V-ATPase in modulating a macrophage phenotype towards TAMs through the action of a2NTD, suggesting it to be a potential therapeutic target in cancer. Source

Rosalind Franklin University of Medicine and Science | Date: 2012-12-21

The present invention provides a method for treating a human patient with a pathology by administering to the subject an effective amount of an agent selected from the group of: native full-length CCN3 proteins; analog CCN3 full-length proteins with native cysteine residues substituted by a replacement amino acid; CCNp native peptide fragments having from about 12 to about 20 amino acids; analog CCNp peptide fragments with native cysteine residues substituted with a replacement amino acid; and combinations thereof.

Rosalind Franklin University of Medicine and Science | Date: 2012-12-03

The present invention provides a kit for measuring the content of micro-RNA in a human blood sample including a blood collection tube containing at least 1 g NaF and 0.8 g KOx; and providing a set of instructions for collecting a human blood sample in the blood collection tube.

Rosalind Franklin University of Medicine and Science | Date: 2014-02-10

The present invention provides a method for treating Ushers syndrome in a human subject including administering to the human subject an oligonucleotide having 8 to 30 linked nucleosides having a nucleobase sequence comprising a complementary region comprising at least 8 contiguous nucleobases complementary to a target region of equal length within exon 3 of an Usher RNA transcript.

Discover hidden collaborations