Time filter

Source Type

Bourdeau A.,Sunnybrook Research Institute | Bourdeau A.,University of Toronto | Trop S.,Sunnybrook Research Institute | Trop S.,University of Toronto | And 7 more authors.
Stem Cells | Year: 2013

The clinical application of hematopoietic progenitor cellbased therapies for the treatment of hematological diseases is hindered by current protocols, which are cumbersome and have limited efficacy to augment the progenitor cell pool. We report that inhibition of T-cell protein tyrosine phosphatase (TC-PTP), an enzyme involved in the regulation of cytokine signaling, through gene knockout results in a ninefold increase in the number of hematopoietic progenitors in murine bone marrow (BM). This effect could be reproduced using a short (48 hours) treatment with a pharmacological inhibitor of TC-PTP in murine BM, as well as in human BM, peripheral blood, and cord blood. We also demonstrate that the ex vivo use of TC-PTP inhibitor only provides a temporary effect on stem cells and did not alter their capacity to reconstitute all hematopoietic components in vivo. We establish that one of the mechanisms whereby inhibition of TCPTP mediates its effects involves the interleukin-18 (IL-18) signaling pathway, leading to increased production of IL-12 and interferon-gamma by progenitor cells. Together, our results reveal a previously unrecognized role for IL-18 in contributing to the augmentation of the stem cell pool and provide a novel and simple method to rapidly expand progenitor cells from a variety of sources using a pharmacological compound. © 2012 AlphaMed Press. Source

Guo J.,McGill University | Canaff L.,McGill University | Rajadurai C.V.,Rosalind and Morris Goodman Cancer Center | Fils-Aime N.,McGill University | And 7 more authors.
Breast Cancer Research | Year: 2014

Introduction: This study helps to define the implications of breast cancer anti-estrogen resistance 3 (BCAR3) in breast cancer and extends the current understanding of its molecular mechanism of action. BCAR3 has been shown to promote cell proliferation, migration and attachment to extracellular matrix components. However, in a cohort of metastatic breast cancer patients who received tamoxifen treatment, high BCAR3 mRNA levels were associated with favorable progression-free survival outcome. These results suggest that, besides its established roles, BCAR3 may have additional mechanisms of action that regulate breast cancer aggressive phenotype. In this study, we investigated whether BCAR3 is a novel antagonist of the canonical transforming growth factor β (TGFβ) pathway, which induces potent migration and invasion responses in breast cancer cells. Methods: We surveyed functional genomics databases for correlations between BCAR3 expression and disease outcomes of breast cancer patients. We also studied how BCAR3 could regulate the TGFβ/Smad signaling axis using Western blot analysis, coimmunoprecipitation and luciferase assays. In addition, we examined whether BCAR3 could modulate TGFβ-induced cell migration and invasion by using an automated imaging system and a confocal microscopy imaging-based matrix degradation assay, respectively. Results: Relatively low levels of BCAR3 expression in primary breast tumors correlate with poor distant metastasis-free survival and relapse-free survival outcomes. We also found a strong correlation between the loss of heterozygosity at BCAR3 gene alleles and lymph node invasion in human breast cancer, further suggesting a role for BCAR3 in preventing disease progression. In addition, we found BCAR3 to inhibit Smad activation, Smad-mediated gene transcription, Smad-dependent cell migration and matrix digestion in breast cancer cells. Furthermore, we found BCAR3 to be downregulated by TGFβ through proteasome degradation, thus defining a novel positive feedback loop mechanism downstream of the TGFβ/Smad signaling pathway. Conclusion: BCAR3 is considered to be associated with aggressive breast cancer phenotypes. However, our results indicate that BCAR3 acts as a putative suppressor of breast cancer progression by inhibiting the prometastatic TGFβ/Smad signaling pathway in invasive breast tumors. These data provide new insights into BCAR3's molecular mechanism of action and highlight BCAR3 as a novel TGFβ/Smad antagonist in breast cancer. © 2014 Guo et al.; licensee BioMed Central. Source

Liberman N.,Weizmann Institute of Science | Liberman N.,Harvard University | Gandin V.,McGill University | Gandin V.,Rosalind and Morris Goodman Cancer Center | And 11 more authors.
Nucleic Acids Research | Year: 2015

Initiation is a highly regulated rate-limiting step of mRNA translation. During cap-dependent translation, the cap-binding protein eIF4E recruits the mRNA to the ribosome. Specific elements in the 5′UTR of some mRNAs referred to as Internal Ribosome Entry Sites (IRESes) allow direct association of the mRNA with the ribosome without the requirement for eIF4E. Cap-independent initiation permits translation of a subset of cellular and viral mRNAs under conditions wherein cap-dependent translation is inhibited, such as stress, mitosis and viral infection. DAP5 is an eIF4G homolog that has been proposed to regulate both cap-dependent and cap-independent translation. Herein, we demonstrate that DAP5 associates with eIF2β and eIF4AI to stimulate IRES-dependent translation of cellular mRNAs. In contrast, DAP5 is dispensable for cap-dependent translation. These findings provide the first mechanistic insights into the function of DAP5 as a selective regulator of cap-independent translation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. Source

Andersen S.D.,Roskilde University | Keijzers G.,Copenhagen University | Rampakakis E.,Rosalind and Morris Goodman Cancer Center | Engels K.,University of Zurich | And 10 more authors.
DNA Repair | Year: 2012

Human exonuclease 1 (hEXO1) acts directly in diverse DNA processing events, including replication, mismatch repair (MMR), and double strand break repair (DSBR), and it was also recently described to function as damage sensor and apoptosis inducer following DNA damage. In contrast, 14-3-3 proteins are regulatory phosphorserine/threonine binding proteins involved in the control of diverse cellular events, including cell cycle checkpoint and apoptosis signaling. hEXO1 is regulated by post-translation Ser/Thr phosphorylation in a yet not fully clarified manner, but evidently three phosphorylation sites are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding experiments reveal weak affinity of the more selective isoform 14-3-3σ but both 14-3-3 isoforms η and σ significantly stimulate hEXO1 activity, indicating that these regulatory proteins exert a common regulation mode on hEXO1. Results demonstrate that binding involves the phosphorable amino acid S746 in hEXO1 and most likely a second unidentified binding motif. 14-3-3 associations do not appear to directly influence hEXO1 in vitro nuclease activity or in vitro DNA replication initiation. Moreover, specific phosphorylation variants, including hEXO1 S746A, are efficiently imported to the nucleus; to associate with PCNA in distinct replication foci and respond to DNA double strand breaks (DSBs), indicating that 14-3-3 binding does not involve regulating the subcellular distribution of hEXO1. Altogether, these results suggest that association may be related to regulation of hEXO1 availability during the DNA damage response to plausibly prevent extensive DNA resection at the damage site, as supported by recent studies. © 2011 Elsevier B.V.. Source

Khairnar V.,University of Duisburg - Essen | Duhan V.,University of Duisburg - Essen | Maney S.K.,Heinrich Heine University Dusseldorf | Honke N.,University of Duisburg - Essen | And 29 more authors.
Nature Communications | Year: 2015

B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κ B-axis. The absence of this signalling cascade in naive Ceacam 1 -/- mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam 1-/- mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. © 2015 Macmillan Publishers Limited. Source

Discover hidden collaborations