Entity

Time filter

Source Type

Lestrem, France

Patent
Roquette Freres | Date: 2015-08-25

Dianhydrohexitol pellets, whose fluidity is preserved even after lengthy storage, include between 90% and 100%, preferably between 95% and 100%, and more preferentially between 97% and 100% of dianhydrohexitols by weight, on a dry weight basis, and have the particularity of not being subject to caking. A process for preparing the dianhydrohexitol pellets is also described.


The invention relates to a method for stabilising a biomass of microalgae containing oxidation-sensitive metabolites selected from the group consisting of carotenoids (lutein, etc.), monounsaturated and polyunsaturated fatty acids (palmitoleic acid, oleic acid, linoleic acid, etc.), chlorophyll pigments (chlorophyll A and B, etc.) and vitamins (vitamin B9 and B12, etc.) taken individually or together, more specifically carotenoids, said method comprising the fermentation of said biomass in heterotrophic conditions.


Patent
Roquette Freres | Date: 2014-03-27

The invention relates to a method for protein enrichment of a microalga grown under heterotrophic conditions, said microalga being of the


Patent
Roquette Freres | Date: 2014-03-25

The present invention relates to a biological method for assaying peptidoglycans (PGN) in a sample, particularly a sample of glucose polymers. The PGN assay includes: a) treating the glucose polymer sample by sonication, heating, and/or alkalizing; b) placing the treated sample or a dilution thereof in contact with a recombinant cell expressing an exogenous TLR2 (toll-like receptor 2) and a reporter gene directly dependent on the signaling pathway associated with the TLR2. The reporter gene codes for a colored or fluorescent protein or for a protein the activity of which is measurable with or without a substrate; c) measuring the reporter gene signal; and d) determining the amount of PGN in the sample using a standard curve of the correlation between the amount or PGN and the strength of the reporter gene signal.


A method for fractionating soluble fractions of peas, includes, in sequence, a step of microfiltering or centrifuging, followed by a step of ultrafiltering, and optionally a reverse-osmosis step. A reduction of the leakage of proteins toward the soluble fractions, an improvement of the yield of the single concentration step by evaporating the soluble fractions, and the selective isolation of proteins of interest are thus achieved. The method is easy to implement, the devices used at each single step are conventional and well known to the person skilled in the art. Also, the method does not use any organic solvent other than water.

Discover hidden collaborations