Geneva, IL, United States
Geneva, IL, United States

Time filter

Source Type

Panasevich M.R.,Urbana University | Rossoni Serao M.C.,Urbana University | de Godoy M.R.C.,Urbana University | Swanson K.S.,Urbana University | And 5 more authors.
Journal of Animal Science | Year: 2013

Potato fiber (PF), a coproduct of potato starch manufacture, was evaluated as a potential novel fiber source in dog food. Potato fiber contained 55% total dietary fiber, 29% starch, 4% crude protein, and 2% acid-hydrolyzed fat. The PF substrate was evaluated for chemical composition, in vitro digestion and fermentation characteristics, and in vivo responses. For the in vitro hydrolytic-enzymatic digestion and fermentation experiment, raw and cooked PF substrates were first subjected to hydrolytic-enzymatic digestion to determine OM disappearance and then fermented using dog fecal inoculum. Fermentation characteristics were then measured at 0, 3, 6, 9, and 12 h. For the in vivo experiment, 10 female mixed-breed dogs (6.13 ± 0.17 yr; 22 ± 2.1 kg) were provided 5 diets with graded concentrations (0%, 1.5%, 3%, 4.5%, or 6%) of PF in a replicated 5 × 5 Latin square design. Dogs were acclimated to the test diet for 10 d, followed by 4 d of total fecal collection. Fresh fecal samples were collected to measure fecal pH and fermentation end products. In vitro digestion revealed that raw and cooked PF were 32.3% and 27.9% digested enzymatically, whereas in vitro fermentation showed that PF was fermentable through 9 h. Raw PF had greater (P < 0.05) acetate, propionate, and total short-chain fatty acid (SCFA) concentrations at the 12-h time point compared with cooked PF. The in vivo experiment showed no differences in apparent total tract DM, OM, CP, acid-hydrolyzed fat, or energy digestibility of diets containing graded concentrations of PF. However, total dietary fiber digestibility exhibited a linear increase (P < 0.01) with increasing PF concentrations in the diet. Overall, linear increases (P < 0.01) were observed for all individual and total SCFA, with a concomitant linear decrease (P < 0.01) in fecal pH with increasing dietary PF. Fecal protein catabolite concentrations were low or undetectable, with the exception of spermidine, which exhibited a linear increase with increasing concentrations of PF. These findings indicated that inclusion of PF elicited favorable fermentation characteristics without negatively affecting nutrient digestibility or stool characteristics, indicating that PF could be a functional dietary fiber source in dog foods. © 2013 American Society of Animal Science. All rights reserved.


Panasevich M.R.,Urbana University | Kerr K.R.,Urbana University | Dilger R.N.,Urbana University | Fahey G.C.,Urbana University | And 7 more authors.
British Journal of Nutrition | Year: 2015

Inclusion of fermentable fibres in the diet can have an impact on the hindgut microbiome and provide numerous health benefits to the host. Potato fibre (PF), a co-product of potato starch isolation, has a favourable chemical composition of pectins, resistant and digestible starch, cellulose, and hemicelluloses. The objective of the present study was to evaluate the effect of increasing dietary PF concentrations on the faecal microbiome of healthy adult dogs. Fresh faecal samples were collected from ten female dogs with hound bloodlines (6·13 (sem 0·17) years; 22·0 (sem 2·1) kg) fed five test diets containing graded concentrations of PF (0, 1·5, 3, 4·5 or 6 % as-fed; Roquette Frères) in a replicated 5 × 5 Latin square design. Extraction of DNA was followed by amplification of the V4-V6 variable region of the 16S rRNA gene using barcoded primers. Sequences were classified into taxonomic levels using Basic Local Alignment Search Tool (BLASTn) against a curated GreenGenes database. Inclusion of PF increased (P< 0·05) the faecal proportions of Firmicutes, while those of Fusobacteria decreased (P< 0·05). Similar shifts were observed at the genus level and were confirmed by quantitative PCR (qPCR) analysis. With increasing concentrations of PF, faecal proportions of Faecalibacterium increased (P< 0·05). Post hoc Pearson's correlation analysis showed positive (P< 0·05) correlations with Bifidobacterium spp. and butyrate production and Lactobacillus spp. concentrations. Overall, increases in the proportion of Faecalibacterium (not Lactobacillus/Bifidobacterium, as confirmed by qPCR analysis) and faecal SCFA concentrations with increasing dietary PF concentrations suggest that PF is a possible prebiotic fibre. Copyright © The Authors 2014.


Kshirsagar H.H.,Florida State University | Kshirsagar H.H.,Roquette America Inc. | Fajer P.,Florida State University | Sharma G.M.,Florida State University | And 3 more authors.
Journal of Agricultural and Food Chemistry | Year: 2011

Native, undenatured amandin and anacardein secondary structures were estimated to be, respectively, 56.4 and 49% β-sheet, 14 and 23.7% α-helix, and 29.6 and 27.4% random coil. Circular dichroic (CD) and fluorescence spectroscopy were used to assess structural changes in amandin and anacardein subjected to denaturing treatments that included heat (100 °C, 5 min), guanidium HCl (GuHCl), urea, sodium dodecyl sulfate (SDS), and reducing agent, 2% v/v β-mercaptoethanol (βME) + heat. Mouse monoclonal antibodies (mAbs) 4C10 and 4F10 directed against amandin and 1F5 and 4C3 directed against anacardein were used to assess the influence of denaturing treatments on the immunoreactivity of amandin and anacardein. Among the denaturing treatments investigated, SDS and β-ME caused a significant reduction in the immunoreactivity of amandin and anacardein when probed with mAb 4C10 and 4C3, respectively. © 2010 American Chemical Society.


Yang H.,Shanghai Daan Center for Medical Laboratory | Guerin-Deremaux L.,Roquette Freres | Zhou L.,Roquette America Inc. | Fratus A.,Roquette America Inc. | And 4 more authors.
Agro Food Industry Hi-Tech | Year: 2012

A rat feeding study was conducted to determine the nutritional quality of a novel pea protein using the Protein Digestibility-Corrected Amino Acid Score (PDCAAS) methodology. 30 weanling male Sprague-Dawley rats were randomly assigned to one of three diets: protein-free feed (Control), high nitrogen casein feed (Casein), or pea protein. True Digestibility of the protein feeds was 98.0±1.2 percent for Casein and 97.3±1.6 percent for pea protein. The estimated PDCAAS of pea protein was 85 percent for children 3 to 10 years and 93 percent for adults. The pea protein evaluated in this study has a protein quality similar to that of casein, eggs, and soy and much higher than that of common vegetable-based protein sources.


Felton L.A.,University of New Mexico | Popescu C.,Roquette America Inc. | Wiley C.,University of New Mexico | Esposito E.X.,Chem21 Group Inc. | And 4 more authors.
AAPS PharmSciTech | Year: 2014

The objective of this research was to investigate physicochemical properties of an active pharmaceutical ingredient (API) that influence cyclodextrin complexation through experimental and computational studies. Native β-cyclodextrin (B-CD) and two hydroxypropyl derivatives were first evaluated by conventional phase solubility experiments for their ability to complex four poorly water-soluble nonsteroidal anti-inflammatory drugs (NSAIDs). Differential scanning calorimetry was used to confirm complexation. Secondly, molecular modeling was used to estimate Log P and aqueous solubility (S o) of the NSAIDs. Molecular dynamics simulations (MDS) were used to investigate the thermodynamics and geometry of drug-CD cavity docking. NSAID solubility increased linearly with increasing CD concentration for the two CD derivatives (displaying an AL profile), whereas increases in drug solubility were low and plateaued in the B-CD solutions (type B profile). The calculated Log P and So of the NSAIDs were in good concordance with experimental values reported in the literature. Side chain substitutions on the B-CD moiety did not significantly influence complexation. Explicitly, complexation and the associated solubility increase were mainly dependent on the chemical structure of the NSAID. MDS indicated that each NSAID-CD complex had a distinct geometry. Moreover, complexing energy had a large, stabilizing, and fairly constant hydrophobic component for a given CD across the NSAIDs, while electrostatic and solvation interaction complex energies were quite variable but smaller in magnitude. © 2014 American Association of Pharmaceutical Scientists.


Panasevich M.R.,Urbana University | Kerr K.R.,Urbana University | Rossoni Serao M.C.,Urbana University | de Godoy M.R.C.,Urbana University | And 7 more authors.
Journal of Animal Science | Year: 2015

Dietary fermentable fiber is known to benefit intestinal health of companion animals. Soluble corn fiber (SCF) was evaluated for its chemical composition, nitrogen-corrected true ME (TMEn) content, in vitro digestion and fermentation characteristics, and in vivo effects on nutrient digestibility, fecal fermentation end products, and modulation of the fecal microbiome of dogs. Soluble corn fiber contained 78% total dietary fiber, all present as soluble dietary fiber; 56% was low molecular weight soluble fiber (did not precipitate in 95% ethanol). The SCF also contained 26% starch and 8% resistant starch and had a TMEn value of 2.6 kcal/g. Soluble corn fiber was first subjected to in vitro hydrolytic-enzymatic digestion to determine extent of digestibility and then fermented using dog fecal inoculum, with fermentative outcomes measured at 0, 3, 6, 9, and 12 h. Hydrolytic-enzymatic digestion of SCF was only 7%. In vitro fermentation showed increased (P < 0.05) concentrations of shortchain fatty acids through 12 h, with acetate, propionate, and butyrate reaching peak concentrations of 1,803, 926, and 112 μmol/g DM, respectively. Fermentability of SCF was higher (P < 0.05) than for cellulose but lower (P < 0.05) than for pectin. In the in vivo experiment, 10 female dogs (6.4 ± 0.2 yr and 22 ± 2.1 kg) received 5 diets with graded concentrations of SCF (0, 0.5, 0.75, 1.0, or 1.25% [as-is basis]) replacing cellulose in a replicated 5 × 5 Latin square design. Dogs were first acclimated to the experimental diets for 10 d followed by 4 d of total fecal collection. Fresh fecal samples were collected to measure fecal pH and fermentation end products and permit a microbiome analysis. For microbiome analysis, extraction of DNA was followed by amplification of the V4 to V6 variable region of the 16S rRNA gene using barcoded primers. Sequences were classified into taxonomic levels using a nucleotide basic local alignment search tool (BLASTn) against a curated GreenGenes database. Few changes in nutrient digestibility or fecal fermentation end products or stool consistency were observed, and no appreciable modulation of the fecal microbiome occurred. In conclusion, SCF was fermentable in vitro, but higher dietary concentrations may be necessary to elicit potential in vivo responses. © 2015 American Society of Animal Science. All rights reserved.


Sathe S.K.,Florida State University | Kshirsagar H.H.,Florida State University | Kshirsagar H.H.,Roquette America Inc. | Sharma G.M.,Florida State University | Sharma G.M.,U.S. Food and Drug Administration
Plant Foods for Human Nutrition | Year: 2012

Effects of different solvents, ionic strength, and pH on Inca peanut seed protein solubility were assessed by quantitatively analyzing solubilized proteins using Lowry and Bradford methods. Soluble proteins were fractionated using Osborne procedure and the polypeptide composition of solubilized proteins was determined by one dimensional 25 % monomer acrylamide linear gradient SDS-PAGE. Osborne protein fractions were analyzed by the 2D gel electrophoresis. Total seed proteins were efficiently solubilized by 2 M NaCl among the tested solvents. The soluble seed proteins registered a minimum solubility at pH ~4.0. Osborne protein fractions, albumins, globulins, prolamins, and glutelins accounted for 43.7, 27.3, 3. 0, and 31.9 %, respectively, of the total aqueous soluble proteins. Soluble seed flour proteins are mainly composed of polypeptides in the MW range of 6-70 kDa of which the predominant polypeptides were in the 20-40 kDa range. Prolamin fraction was mainly composed of four polypeptides (MW < 15 kDa). Glycoprotein staining indicated 32-35 and <14 kDa peptides to be positive. © 2012 Springer Science+Business Media, Inc.


PubMed | MR DNA Molecular Research LP, Urbana University, Roquette America Inc., Roquette Freres and Texas A&M University
Type: Journal Article | Journal: The British journal of nutrition | Year: 2016

Inclusion of fermentable fibres in the diet can have an impact on the hindgut microbiome and provide numerous health benefits to the host. Potato fibre (PF), a co-product of potato starch isolation, has a favourable chemical composition of pectins, resistant and digestible starch, cellulose, and hemicelluloses. The objective of the present study was to evaluate the effect of increasing dietary PF concentrations on the faecal microbiome of healthy adult dogs. Fresh faecal samples were collected from ten female dogs with hound bloodlines (613 (SEM 017) years; 220 (SEM 21) kg) fed five test diets containing graded concentrations of PF (0, 15, 3, 45 or 6% as-fed; Roquette Frres) in a replicated 5 5 Latin square design. Extraction of DNA was followed by amplification of the V4-V6 variable region of the 16S rRNA gene using barcoded primers. Sequences were classified into taxonomic levels using Basic Local Alignment Search Tool (BLASTn) against a curated GreenGenes database. Inclusion of PF increased (P< 005) the faecal proportions of Firmicutes, while those of Fusobacteria decreased (P< 005). Similar shifts were observed at the genus level and were confirmed by quantitative PCR (qPCR) analysis. With increasing concentrations of PF, faecal proportions of Faecalibacterium increased (P< 005). Post hoc Pearsons correlation analysis showed positive (P< 005) correlations with Bifidobacterium spp. and butyrate production and Lactobacillus spp. concentrations. Overall, increases in the proportion of Faecalibacterium (not Lactobacillus/Bifidobacterium, as confirmed by qPCR analysis) and faecal SCFA concentrations with increasing dietary PF concentrations suggest that PF is a possible prebiotic fibre.


PubMed | Institute for Drug Delivery and Biomedical Research, Visveswarapuram Institute of Pharmaceutical science, University of Mississippi and Roquette America Inc.
Type: Journal Article | Journal: AAPS PharmSciTech | Year: 2016

The objective of this project was to investigate the potential of Kleptose Linecaps DE17 (KLD) in masking the unpleasant/bitter taste of therapeutic agents by hot melt extrusion (HME). Griseofulvin (GRI) and caffeine anhydrous (CA) were used as a bitter active pharmaceutical ingredient (API) model drugs. Thermogravimetric studies confirmed the stability of GRI, CA, and KLD at the employed extrusion temperatures. The differential scanning calorimetry (DSC) studies revealed a characteristic melting endotherm of GRI at 218-220C and CA at 230-232C in the physical mixtures as well as in all extrudates over the period of study, indicating the crystalline nature of drug. HME of KLD was achieved only in the presence of plasticizer. Among the several plasticizers investigated, xylitol showed improved processability of KLD at 15% w/w concentration. Dissolution studies of HME extrudates using simulated salivary medium exhibited threefold less release compared to physical mixture at the end of 5min (the lesser drug release, better the taste masking efficiency). Furthermore, the results from the sensory evaluation of products in human panel demonstrated strong bitter taste in the case of physical mixture compared to the HME formulation, suggesting the potential of Kleptose Linecaps DE17 as taste masking polymer in melt extruded form.


Trademark
Roquette America Inc. | Date: 2013-06-04

Bulking agent, flavor carrier, and carbohydrate source for food, pharmaceutical, and industrial products, namely maltodextrin.

Loading Roquette America Inc. collaborators
Loading Roquette America Inc. collaborators