Pleasanton, CA, United States
Pleasanton, CA, United States

Time filter

Source Type

Patent
Rolith Inc. | Date: 2012-07-19

Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a rotatable mask is used to image a radiation-sensitive material. Typically the rotatable mask comprises a cylinder. The nanopatterning technique makes use of Near-Field photolithography, where the mask used to pattern the substrate is in contact or close proximity with the substrate. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a rotating cylinder surface comprises metal nano holes or nanoparticles.


Rolling mask lithography may be performed to expose selected portions of a radiation sensitive layer to a radiation pattern that leaves selected portions of a top surface of the radiation sensitive layer resistant to development by a developer and non-selected portions susceptible to development by the developer. A structure of the selected portions is then rendered resistant to an etch process. The radiation sensitive layer is then flood exposed to a second radiation that leaves the radiation sensitive layer resistant to development by the developer. The radiation sensitive layer is then selectively etched using the etch-resistant selected portions as an etch mask.


Patent
Rolith Inc. | Date: 2014-03-28

In the proposed plasmonic nanolithography technique a transparent mask is brought into physical contact with a metal on a substrate that is coated with a photoresist. The mask is not made of metal or other material that supports surface plasmons. The metal layer is exposed to radiation of a characteristic vacuum wavelength through the mask and the photoresist or through the substrate. The mask features and the vacuum wavelength of the radiation are chosen so that the radiation excites surface plasmons at the interface between the metal and the photoresist. The excitation of surface plasmons allows for the exposure and generation of features which are well-below the free space diffraction limit and small compared to the size of the features in the mask.


Patent
Rolith Inc. | Date: 2014-10-22

A cylindrical mask may be fabricated using a hollow casting cylinder and a mask cylinder. The casting cylinder has an inner diameter that is larger than the outer diameter of the mask cylinder. The casting and mask cylinders are coaxially assembled and a liquid polymer inserted in a space surrounding the mask cylinder between the inner surface of the casting cylinder and the outer surface of the mask cylinder. After curing the liquid polymer, the casting cylinder is removed. A surface of the cured polymer can be patterned. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.


Patent
Rolith Inc. | Date: 2012-03-09

Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a rotatable mask is used to image a radiation-sensitive material. Typically the rotatable mask comprises a cylinder. The nanopatterning technique makes use of Near-Field photolithography, where the mask used to pattern the substrate is in contact or close proximity with the substrate. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a rotating cylinder surface comprises metal nano holes or nanoparticles.


Patent
Rolith Inc. | Date: 2013-01-31

Aspects of the present disclosure describe cylindrical molds that may be used to produce cylindrical masks for use in lithography. A structured porous layer may be deposited on an interior surface of a cylinder. A radiation-sensitive material may be deposited over the porous layer in order to fill pores formed in the layer. The radiation-sensitive material in the pores may be cured by exposing the cylinder with a light source. The uncured resist and porous layer may be removed, leaving behind posts on the cylinders interior surface. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.


Aspects of the present disclosure include a cylindrical master mold assembly having a cylindrical patterned component with a first diameter and a sacrificial casting component with a second diameter. The component with the smaller radius may be co-axially inserted into the interior of the component with the larger radius. Patterned features may be formed on the interior surface of the cylindrical patterned component that faces the sacrificial casting component. The sacrificial casting component may be removed once a cast polymer has been cured to allow the polymer to be released. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.


Patent
Rolith Inc. | Date: 2013-02-14

Methods for fabricating nanopatterned cylindrical photomasks are disclosed. A master pattern having nanometer scale features may be formed on a master substrate. A layer of an elastomer material may be formed on a surface of a transparent cylinder. The master pattern may be transferred from the master to the layer of elastomer material on the surface of the transparent cylinder. Alternatively, a nanopatterned cylindrical photomask may be fabricated by forming a pattern having nanometer scale features on an elastomer substrate and laminating the patterned elastomer substrate to a surface of a cylinder. In another method, a layer of elastomer material may be formed on a surface of a transparent cylinder and a pattern having nanometer scale features may be formed on the elastomer material by a direct patterning process.


Patent
Rolith Inc. | Date: 2012-05-15

An apparatus to carry out patterning of a disk includes a rotatable mask having a cone shape and a nanopattern on an exterior surface of said mask and a radiation source configured to supply radiation of a wavelength of 436 nm or less from said nanopattern, while said nanopattern is in contact with a radiation-sensitive layer of material. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.


Embodiments of the present invention are directed to techniques for obtaining patterns of features. One set of techniques uses multiple-pass rolling mask lithography to obtain the desired feature pattern. Another technique uses a combination of rolling mask lithography and a self-aligned plasmonic mask lithography to obtain a desired feature pitch.

Loading Rolith Inc. collaborators
Loading Rolith Inc. collaborators