Rogers, CT, United States
Rogers, CT, United States

Rogers Corporation is an American specialty materials company with headquarters located in Rogers, Connecticut. In 1832, Peter Rogers founded the company, which started out as a materials manufacturer for the textile industry. Rogers is known as one of the oldest public companies in America, and has a great standing of innovation and collaborative problem solving with its customers. Originally a paperboard manufacturing company, Rogers has formed into a major global materials technology leader, creating a variety of high-technology devices and systems. Rogers, as of 2013, has 2,400 full-time employees both in the U.S. and around the world in Japan, Taiwan, Singapore, Korea, China, Germany and Belgium. Since its inception, Rogers has been known for sticking to a set of Values that guide the company’s actions. These values help guide the company with “decisions and behaviors within the company and defines their relationships with employees, customers, and the communities in which they operate around the world.“ Rogers Corporation has seven divisions, including the Advanced Circuit Materials division, which offers high-frequency printed circuit board laminates and flexible circuit laminates; the High Performance Foams division; and the Durel division, which offers electroluminescent lighting and drivers. Rogers uses C.A.G. as a foundation for the company’s culture of innovation. These three ideas is how Rogers works together to develop new, innovative material technologies that power, protect, and connect our world. Rogers continues to focus its research, development, and engineering investments on megatrends, a large, long-lasting, global shift in thinking or an approach that affects countries, industries and organizations, which drives global demand for a cleaner, safer, and more connected world. The company was listed on the New York Stock Exchange in April, 2000. In 2013, Rogers is the technology leader in their chosen markets of research. Their goal is to “imagine what could be possible, then apply it to their creativity, research and development expertise to create new products and services for their customers.” Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
Rogers Corporation | Date: 2017-01-11

A dielectric substrate comprises a resin composition impregnated with non-woven fibrous mat material having a thickness of 5 mils (127 micrometers), wherein the fibrous mat material comprises fibers, having a diameter of 1 nm to 10 m, that have been extruded through one or more openings to produce fibers that have been collected in the form of a fibrous non-woven mat, and wherein the fibers exhibit a multi-directional orientation in the non-woven mat material. The dielectric substrate is useful in circuit materials, circuits, and multi-layer circuits, economical to make, and has excellent electrical and mechanical properties.


A thermosetting polymer formulation includes: 40 to 90 volume percent of a thermosetting polymer system; 10 to 40 volume percent, preferably 20 to 35 volume percent, preferably 20 to 30 volume percent, of a plurality of hexagonal boron nitride platelets having a mean particle diameter of 5 to 20 micrometers, preferably 8 to 15 micrometers, and a D10 particle diameter of 3 to 7 micrometers, preferably 3 to 5 micrometers, and a D90 particle diameter of 20 to 30 micrometers, preferably 25 to 30 micrometers; a total of 0.01 to 10 volume percent of a coupling agent, an impact modifier, a curing agent, a defoamer, a colorant, a thickening agent, a release agent, an accelerator, or a combination comprising at least one of the foregoing, wherein the volume percentages are based on the total volume of the formulation.


Patent
Rogers Corporation | Date: 2017-01-27

A fluoropolymer composite film wire or cable wrap comprises an outer layer of expanded polytetrafluoroethylene (ePTFE) and an inner layer of melt processable fluoropolymer film. The inner and outer layers are laminated with each other in tape form, such as by the application of heat and/or pressure thereto. The fluoropolymer composite tape is wrapped about one or more wires or cables, and is heated or sintered after wrapping to bond the tape to the wire or cable, and bond the tape to itself at the seams.


A footbed for use in an article of footwear, the footbed comprising a conforming layer having an initial, substantially uniform thickness of 3 to 9 millimeters, and comprising a foam that permanently conforms to a shape of a foot after wear; and a pressure-spreading layer disposed on the conforming layer, having a thickness of 2 to 4 millimeters, and comprising a resilient foam.


In an embodiment, a dielectric substrate comprises an unsintered polytetrafluoroethylene; and a high dielectric constant filler, wherein the dielectric constant of the high dielectric constant filler is greater than or equal to 35; wherein the dielectric substrate has a specific gravity of greater than or equal to 90% of a calculated theoretical density of the dielectric substrate, wherein the theoretical specific gravity is calculated based on a measured specific gravity of the high dielectric constant filler, the specific gravity of the unsintered polytetrafluoroethylene, and the relative weight fractions of the unsintered polytetrafluoroethylene and the high dielectric constant filler; and wherein the dielectric substrate has a dielectric constant of greater than or equal to 11.5 as determined at a frequency of 10 GHz.


A subassembly for a display device includes a display component having an outer display surface and an opposite inner surface; a compressible pressure pad including a plurality of nonwoven fibers having an average diameter of 100 micrometers or less, disposed on the inner surface of the display component; and an internal component disposed on a side of the compressible pressure pad on a side opposite the display component. Methods for reducing ripple effect and improving impact absorption in a display device are also described.


Patent
Rogers Corporation | Date: 2016-11-01

A multilayer article that includes a first polymer foam layer; a second polymer foam layer; and a carbon layer located between the first polymer foam layer and the second polymer foam layer. An article, such as a helmet, can comprise the multilayer article.


A dielectric resonator antenna (DRA) includes: an electrically conductive ground structure; a plurality of volumes of dielectric materials disposed on the ground structure comprising N volumes, N being an integer equal to or greater than 3, disposed to form successive and sequential layered volumes V(i), i being an integer from 1 to N, wherein volume V(1) forms an innermost volume, wherein a successive volume V(i+1) forms a layered shell disposed over and at least partially embedding volume V(i), wherein volume V(N) at least partially embeds all volumes V(1) to V(N1); and a signal feed disposed and structured to be electromagnetically coupled to one or more of the plurality of volumes of dielectric materials.


A method for the manufacture of a dielectric resonator antenna (DRA) or array of DRAs, the DRA having: an electrically conductive ground structure; a plurality of volumes of dielectric materials disposed on the ground structure having N volumes, N being an integer equal to or greater than 3, disposed to form successive and sequential layered volumes V(i), i being an integer from 1 to N, wherein volume V(1) forms an innermost volume, wherein a successive volume V(i+1) forms a layered shell disposed over and at least partially embedding volume V(i), wherein volume V(N) at least partially embeds all volumes V(1) to V(N1); and, a signal feed disposed and structured to be electromagnetically coupled to one or more of the plurality of volumes of dielectric materials. The method including molding at least one of the plurality of volumes of the dielectric material, or all of the volumes of the dielectric material.


A dielectric resonator antenna (DRA), includes: an electrically conductive ground structure; a plurality of volumes of dielectric materials disposed on the ground structure having N volumes, N being an integer equal to or greater than 3, disposed to form successive and sequential layered volumes V(i), i being an integer from 1 to N, wherein volume V(1) forms an innermost volume, wherein a successive volume V(i+1) forms a layered shell disposed over and at least partially embedding volume V(i), wherein volume V(N) at least partially embeds all volumes V(1) to V(N1); and a signal feed disposed and structured to be electromagnetically coupled to one or more of the plurality of volumes of dielectric materials.

Loading Rogers Corporation collaborators
Loading Rogers Corporation collaborators