Rockfield Software Ltd

King's Lynn, United Kingdom

Rockfield Software Ltd

King's Lynn, United Kingdom
SEARCH FILTERS
Time filter
Source Type

Kong L.-W.,CAS Wuhan Institute of Rock and Soil Mechanics | Zeng Z.-X.,CAS Wuhan Institute of Rock and Soil Mechanics | Bai W.,CAS Wuhan Institute of Rock and Soil Mechanics | Wang M.,Rockfield Software Ltd
Bulletin of Engineering Geology and the Environment | Year: 2017

To identify the mechanisms that caused landslides during the construction of the Jilin-Hunchun high-speed railway line in Yanji, China, the engineering properties of weathered swelling mudstones extracted from a representative landslide site were investigated. The experimental results indicate that both yellow-brown and magenta mudstones exhibit significant swelling and shrinkage behaviour due to significant amounts of swelling clay minerals. The yellow-brown mudstone has an obvious schistose structure with stacked flaky plates interconnected with a face-to-face pattern, while the magenta mudstone has an aggregated structure cemented by iron oxides. Both mudstones are prone to disintegration when soaked in water. The shear strengths of swollen samples decrease dramatically compared with those of unsaturated samples, and the lower the initial water content is, the smaller the shear strength of a sample after swelling. By repeatedly increasing the repeated drying-wetting-freezing-thawing cycles, the shear strength decreases. According to the experimental findings, the effects of the engineering properties of mudstones on the landslides occurrence in the Yanji section are discussed. Heavy rainfall and the weathering of mudstones induced by fluctuating climatic conditions are regarded as the principal factors that triggered the landslides. Given the high landslide incidence on south-facing slopes, the influence of slope orientation on the stability of mudstone slopes is studied and discussed. © 2017 Springer-Verlag GmbH Germany


Kong L.-W.,CAS Wuhan Institute of Rock and Soil Mechanics | Wang M.,Rockfield Software Ltd | Guo A.-G.,CAS Wuhan Institute of Rock and Soil Mechanics | Wang Y.,CAS Wuhan Institute of Rock and Soil Mechanics
Journal of Mountain Science | Year: 2017

This paper investigates the effect of drying environment, i.e. temperature and relative humidity, on the engineering properties and microscopic pore size distribution of an expansive soil. The shrinkage tests under different drying temperatures and relative humidity are carried out in a constant climate chamber. Then, the undisturbed samples, prepared in different drying environment, are used for the triaxial tests and mercury intrusion tests. It is found that the drying environment has noticeable influence on the engineering properties of expansive soils and it can be characterized by the drying rate. The linear shrinkage and strength increase with the decrease of the drying rate. The non-uniform deformation tends to happen in the high drying rate, which subsequently furthers the development of cracks. In addition, during the drying process, the variation of pores mainly focuses on the inter-aggregate pores and inter-particle pores. The lower drying rate leads to larger variation of pore size distribution. © 2017, Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany.


Wang M.,University of Swansea | Wang M.,Rockfield Software Ltd | Feng Y.T.,University of Swansea | Wang Y.,CAS Wuhan Institute of Rock and Soil Mechanics | And 2 more authors.
Granular Matter | Year: 2017

This paper presents a periodic boundary condition for the coupled discrete element and lattice Boltzmann method for simulating fluid-particle systems. Detailed implementation of this special boundary condition is given. Besides, the detailed procedure of immersed moving boundary scheme for fluid–solid coupling is proposed. The accuracy and applicability of the proposed periodic boundary condition are well demonstrated by two benchmark tests, i.e. single particle transport and multiple particle migration in an infinite tube filled with water. It is found that the novel periodic boundary condition proposed for discrete element and lattice Boltzmann method can greatly improve the computational efficiency of the later which is computationally expensive when thousands of particles are involved. © 2017, Springer-Verlag Berlin Heidelberg.


Lobao M.C.,University of Swansea | Lobao M.C.,Black and Veatch Ltd. | Eve R.,Rockfield Software Ltd. | Owen D.R.J.,University of Swansea | De Souza Neto E.A.,University of Swansea
Engineering Computations (Swansea, Wales) | Year: 2010

Purpose - The mechanical response of the skeleton of a porous medium is highly dependent on its seepage behaviour as pore pressure modifications affect the in situ stress field. The purpose of this paper is to describe how u-p formulation is employed using an explicit time integration scheme where fully saturated and single-phase partially saturated analyse are incorporated for 2D and 3D cases. Design/methodology/approach - Owing to their inherent simplicity, low-order elements provide an excellent framework in which contact conditions coupled with crack propagation can be dealt with in an effective manner. For linear elements this implies single point integration which, however, can result in spurious zero-energy modes which necessitates introduction of a stabilization technique to provide reliable results. Findings - The success of the modelling strategy ultimately depends on the inter-dependence of different phenomena. The linking between the displacements components, network and pore pressures represents an important role in the efficiency of the overall coupling procedure. Therefore, a master-slave technique is proposed to link seepage and network fields, proving to be particularly attractive from a computational cost point of view. Another development that has provided substantial savings in CPU times is the use of an explicit-explicit subcycling scheme. Originality/value - Significant reduction in computational cost is achievable using a master-slave procedure to link seepage and fracture network-flows and an explicit-explicit subcycling scheme. Special attention is focused on the investigation of the influence of plastic zones in oil production problems. © Emerald Group Publishing Limited.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: NMP-2008-1.1-1 | Award Amount: 4.93M | Year: 2010

The main scientific aims are to radically improve understanding of the human mechanotransduction system and tissue engineered nanobiosensors. This will be achieved through systematic integration of new developments from converging scientific areas by involving academic and industrial participants who are experts in cognitive sciences, microneurography, brain imaging, cell biology and mechanics, tissue engineering, skin physics (tribology and mechanics), microengineering, multi-scale multi-physics modelling, information processing, robotics, prosthetics and medical rehabilitation. The project will build on existing discriminative touch research in order to understand affective touch mediated by the human fingerpad. Sensors capable of detecting directional force and temperature will be developed since a combination of these modalities is critical to the affective component of the neurophysiological response evoked in taction. This next generation of sensors will include NEMS arrays and hybrid bio-NEMS systems. They will be integrated into a robotic finger with articulation controlled by neural network information processing that will allow artificial exploration of a surface to be achieved in ways that mimic human haptic behaviour and affective response. The impact of the project will include alleviating the effects of human touch and vision disabilities, improving the quality of life, security printing, brand protection, smart packaging, space exploration and also the evaluation of products such as textiles and skin creams using the instrumented robotic finger. The consortium includes industrial participants who will undertake specific technical exploitation activities in order to maximise the commercial impact of the research.


Angus D.A.,University of Leeds | Kendall J.-M.,University of Bristol | Fisher Q.J.,University of Leeds | Segura J.M.,University of Leeds | And 5 more authors.
Geophysical Prospecting | Year: 2010

In this paper, we investigate production induced microseismicity based on modelling material failure from coupled fluid-flow and geomechanical simulation. The model is a graben style reservoir characterized by two normal faults subdividing a sandstone reservoir into three compartments. The results are analysed in terms of spatial and temporal variations in distribution of material failure. We observe that material failure and hence potentially microseismicity is sensitive to not only fault movement but also fluid movement across faults. For sealing faults, failure is confined to the volume in and around the well compartment, with shear failure localized along the boundaries of the compartment and shear-enhanced compaction failure widespread throughout the reservoir compartment. For non-sealing faults, failure is observed within and surrounding all three reservoir compartments as well as a significant distribution located near the surface of the overburden. All shear-enhanced compaction failures are localized within the reservoir compartments. Fault movement leads to an increase in shear-enhanced compaction events within the reservoir as well as shear events located within the side-burden adjacent to the fault. We also evaluate the associated moment tensor mechanisms to estimate the pseudo scalar seismic moment of failure based on the assumption that failure is not aseismic. The shear-enhanced compaction events display a relatively normal and tight pseudo scalar seismic moment distribution centred about 106 Pa, whereas the shear events have pseudo scalar seismic moments that vary over three orders of magnitude. Overall, the results from the study indicate that it may be possible to identify compartment boundaries based on the results of microseismic monitoring. © 2010 European Association of Geoscientists & Engineers.


Thornton D.A.,Rockfield Software Ltd | Thornton D.A.,Chevron | Crook A.J.L.,Three Cliffs Geomechanical Analysis
Rock Mechanics and Rock Engineering | Year: 2014

Reconstruction of geological structures has the potential to provide additional insight into the effect of the depositional history on the current-day geomechanical and hydro-geologic state. Accurate modeling of the reconstruction process is, however, complex, necessitating advanced procedures for the prediction of fault formation and evolution within fully coupled geomechanical, fluid flow and temperature fields. In this paper, a 3-D computational approach is presented that is able to forward model complex structural evolution with multiple intersecting faults that exhibit large relative movement within a coupled geomechanical/flow environment. The approach adopts the Lagrangian method, complemented by robust and efficient automated adaptive meshing techniques, an elasto-plastic constitutive model based on critical state concepts, and global energy dissipation regularized by inclusion of fracture energy in the equations governing state variable evolution. The proposed model is validated by comparison of 2-D plane strain and 3-D thin-slice predictions of a bench-scale experiment, and then applied to two conceptual coupled geomechanical/fluid flow field-scale benchmarks. © 2014 Springer-Verlag Wien.


Baird A.F.,University of Bristol | Kendall J.-M.,University of Bristol | Verdon J.P.,University of Bristol | Wuestefeld A.,NORSAR | And 4 more authors.
Geophysical Journal International | Year: 2013

Hydraulic overpressure can induce fractures and increase permeability in a range of geological settings, including volcanological, glacial and petroleum reservoirs. Here we consideran example of induced hydraulic fracture stimulation in a tight-gas sandstone. Successful exploitation of tight-gas reservoirs requires fracture networks, either naturally occurring, or generated through hydraulic stimulation. The study of seismic anisotropy provides a means to infer properties of fracture networks, such as the dominant orientation of fracture sets and fracture compliances. Shear wave splitting from microseismic data acquired during hydraulic fracture stimulation allows us to not only estimate anisotropy and fracture properties, but also to monitor their evolution through time. Here, we analyse shear wave splitting using microseismic events recorded during a multistage hydraulic fracture stimulation in a tight-gas sandstone reservoir. A substantial rotation in the dominant fast polarization direction (ψ) is observed between the events of stage 1 and those from later stages. Although large changes in ψ have often been linked to stress-induced changes in crack orientation, here we argue that it can better be explained by a smaller fracture rotation coupled with an increase in the ratio of normal to tangential compliance (ZN/ZT) from 0.3 to 0.6. ZN/ZT is sensitive to elements of the internal architecture of the fracture, as well as fracture connectivity and permeability. Thus, monitoring ZN/ZT with shear wave splitting can potentially allow us to remotely detect changes in permeability caused by hydraulic stimulation in a range of geological settings. © The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society.


Carneiro Molina A.J.,Rockfield Software Ltd | Curiel-Sosa J.L.,University of Sheffield
Finite Elements in Analysis and Design | Year: 2015

This paper presents a multiscale finite element homogenization technique (MFEH) for modelling nonlinear deformation of multi-phase materials. A novel condensation technique to relate force variations acting on the representative volume element (RVE) - involving antiperiodicity of traction forces at RVE corners - and displacement variations on boundary-nodes is proposed. The formulation to accommodate the condensation technique and overall tangent modulus is presented in detail. In this context, the effective homogenised tangent modulus is computed as a function of microstructure stiffness matrix which, in turn, depends upon the material properties and geometrical distribution of the micro-constituents. Numerical tests concerning plastic materials with different voids distributions are presented to show the robustness of the proposed MFEH. © 2014 Elsevier B.V. All rights reserved.


Profit M.L.,Rockfield Software Ltd | Dutko M.,Rockfield Software Ltd | Yu J.,Rockfield Software Ltd
49th US Rock Mechanics / Geomechanics Symposium 2015 | Year: 2015

Hydraulic fracturing in tight gas reservoirs is a complex physical process with interactions between tracking fluid flow in a confined channel, fracture propagation in reaction to an initial and evolving stress state, proppant transport inside an advancing fracture and finally gas production over the life-time of the well. This paper outlines the modelling methodology of a combined Finite Element (FE) and Discrete Element (DE) technology which is used in the software package ELFEN to simulate hydraulic fracturing. Current FE/DE technologies require a fine mesh in the region of the advancing tip to satisfactorily capture stress concentrations. The developments are centred on the capability to simulate fracture propagation within a geometry fracture insertion rather than element splitting framework. A local remeshing scheme is adopted instead of a traditional global remeshing procedure in which a fine mesh is maintained only adjacent to fracture tips to readily cut down on computational cost. The newly developed technology is demonstrated on simulating fluid driven fractures in single and multiple stimulated wells. Copyright 2015 ARMA, American Rock Mechanics Association.

Loading Rockfield Software Ltd collaborators
Loading Rockfield Software Ltd collaborators