Entity

Time filter

Source Type

New York City, NY, United States

The Rockefeller University is an American private university located in New York City in the United States, offering postgraduate and postdoctoral education. It conducts research mainly in biological science and medical science, and has produced or attracted many Nobel laureates. It has the highest number of Nobel Prizes in relation to personnel involved in research in the world. The Rockefeller University is located on the Upper East Side of Manhattan, between 63rd and 68th Streets along York Avenue.Marc Tessier-Lavigne—previously executive vice president of research and chief scientific officer at Genentech—became the university's tenth president on March 16, 2011.The Rockefeller University Press publishes the Journal of Experimental Medicine, the Journal of Cell Biology, and The Journal of General Physiology. Wikipedia.


Several strong conclusions emerge concerning pre-mRNA processing from both old and newer experiments. The RNAPII complex is involved with pre-mRNA processing through binding of processing proteins to the CTD (carboxyl terminal domain) of the largest RNAPII subunit. These interactions are necessary for efficient processing, but whether factor binding to the CTD and delivery to splicing sites is obligatory or facilitatory is unsettled. Capping, addition of an m7Gppp residue (cap) to the initial transcribed residue of a pre-mRNA, occurs within seconds. Splicing of pre-mRNA by spliceosomes at particular sites is most likely committed during transcription by the binding of initiating processing factors and ∼50% of the time is completed in mammalian cells before completion of the primary transcript. This fact has led to an outpouring in the literature about "cotranscriptional splicing." However splicing requires several minutes for completion and can take longer. The RNAPII complex moves through very long introns and also through regions dense with alternating exons and introns at an average rate of ∼3 kb per min and is, therefore, not likely detained at each splice site for more than a few seconds, if at all. Cleavage of the primary transcript at the 3′ end and polyadenylation occurs within 30 sec or less at recognized polyA sites, and the majority of newly polyadenylated pre-mRNA molecules are much larger than the average mRNA. Finally, it seems quite likely that the nascent RNA most often remains associated with the chromosomal locus being transcribed until processing is complete, possibly acquiring factors related to the transport of the new mRNA to the cytoplasm. Copyright © 2013 RNA Society.


Foley E.A.,Sloan Kettering Institute | Kapoor T.M.,Rockefeller University
Nature Reviews Molecular Cell Biology | Year: 2013

In eukaryotes, chromosome segregation during cell division is facilitated by the kinetochore, a multiprotein structure that is assembled on centromeric DNA. The kinetochore attaches chromosomes to spindle microtubules, modulates the stability of these attachments and relays the microtubule-binding status to the spindle assembly checkpoint (SAC), a cell cycle surveillance pathway that delays chromosome segregation in response to unattached kinetochores. Recent studies are shaping current thinking on how each of these kinetochore-centred processes is achieved, and how their integration ensures faithful chromosome segregation, focusing on the essential roles of kinase-phosphatase signalling and the microtubule-binding KMN protein network. © 2012 Macmillan Publishers Limited. All rights reserved.


Marraffini L.A.,Rockefeller University
Nature | Year: 2015

Prokaryotic organisms are threatened by a large array of viruses and have developed numerous defence strategies. Among these, only clustered, regularly interspaced short palindromic repeat (CRISPR)-Cas systems provide adaptive immunity against foreign elements. Upon viral injection, a small sequence of the viral genome, known as a spacer, is integrated into the CRISPR locus to immunize the host cell. Spacers are transcribed into small RNA guides that direct the cleavage of the viral DNA by Cas nucleases. Immunization through spacer acquisition enables a unique form of evolution whereby a population not only rapidly acquires resistance to its predators but also passes this resistance mechanism vertically to its progeny. © 2015 Macmillan Publishers Limited. All rights reserved.


McEwen B.S.,Rockefeller University
Science | Year: 2013

Social stress can act through glucocorticoids on discrete dopamine-controlled neuronal pathways in the rodent brain to infl uence behavior.


Steinman R.M.,Rockefeller University
Annual Review of Immunology | Year: 2012

A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells are required to explain how this remarkable system is energized and directed. I frame this article in terms of the major decisions that my colleagues and I have made in dendritic cell science and some of the guiding themes at the time the decisions were made. As a result of progress worldwide, there is now evidence of a central role for dendritic cells in initiating antigen-specific immunity and tolerance. The in vivo distribution and development of a previously unrecognized white cell lineage is better understood, as is the importance of dendritic cell maturation to link innate and adaptive immunity in response to many stimuli. Our current focus is on antigen uptake receptors on dendritic cells. These receptors enable experiments involving selective targeting of antigens in situ and new approaches to vaccine design in preclinical and clinical systems. © 2012 by Annual Reviews. All rights reserved.

Discover hidden collaborations