Roal Oy

Finland
Finland
SEARCH FILTERS
Time filter
Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: BBI-RIA | Phase: BBI.VC2.R6-2015 | Award Amount: 3.66M | Year: 2016

The main objective of NeoCel project is to develop innovative and techno-economically feasible alkaline processes enabling the sustainable production of higher quality eco-innovative textile fibres from reactive high-cellulose pulps and integration of these processes with pulp mills. Targets for the development of NeoCel processes are: - wet strength of fibres higher than the wet strength of standard viscose, competing with cotton properties. - lower environmental impact than any other type of existing textile fibre - Reduction of production cost by at least 15% compared to that of best available technology (BAT) viscose The targets will be met through development of adapted pulps with high reactivity/solubility in alkaline water-based solutions, advanced dissolution process to maximize cellulose concentration, novel cellulose regeneration chemistry enabling both recovery of process chemicals and increased strength properties of the spun fibre, design for integration of textile fibre production with the pulp mill for minimized environmental impact, increased energy efficiency and reduced chemical consumption through system analysis using software models of theoretical mills. In NeoCel, a consortium with raw material processing companies, chemical suppliers, equipment producers, SMEs and world-leading research institutes has formed to develop the processes for large scale manufacturing of eco-innovative textile fibres. The consortium expects that a successful NeoCel project will enable creation of 75 000 new jobs and a turn-over increase of 9.5 billion for European forest products, textile and clothing industries within 15 years. However, already within 3 years, the consortium partners expect their joint turnover to increase by 170 MEuro


The present invention discloses novel polypeptides and enzyme preparations containing them, which improve the efficiency of cellulose and lignocellulose degradation even at elevated temperatures. The polypeptides can be produced using conventional recombinant DNA technologies. The related polynucleotides, vectors and host cells are also disclosed. The polypeptides and the enzyme preparations containing them are particularly useful in improving the efficiency of cellulose and lignocellulose degradation, in improving the quality of animal feed, in machine dishwashing applications, in detergent compositions, in pulp and paper, textile, food, baking or beverage industry.


Patent
Roal Oy | Date: 2013-06-06

The present invention discloses novel polypeptides and enzyme preparations containing them, which enhance the efficiency of the cellulosic degradation even at elevated temperatures. The polypeptides are produced by recombinant technology, and means for their production are described. The novel polypeptides are useful in processing biomass, and in biofuel, starch, textile, detergent, pulp and paper, food, feed or beverage industries. They may also be used e.g. in cleaning the interior of a dishwashing machine or for biofinishing or biostoning. The novel polypeptides are also useful in animal feed.


The present invention relates to the production of sugar hydrolysates from cellulosic material. The method may be used e.g. for producing fermentable sugars for the production of bioethanol from lignocellulosic material. Cellulolytic enzymes and their production by recombinant technology is described, as well as uses of the enzymes and enzyme preparations.


The present invention relates to the production of sugar hydrolysates from cellulosic material. The method may be used e.g. for producing fermentable sugars for the production of bioethanol from lignocellulosic material. Cellulolytic enzymes and their production by recombinant technology is described, as well as uses of the enzymes and enzyme preparations.


The present invention relates to the production of sugar hydrolysates from cellulosic material. The method may be used, for example for producing fermentable sugars for the production of bioethanol from lignocellulosic material. Cellulolytic enzymes and their production by recombinant technology are described, as well as uses of the enzymes and enzyme preparations.


The present invention relates to the production of sugar hydrolysates from cellulosic material. The method may be used e.g. for producing fermentable sugars for the production of bioethanol from lignocellulosic material. Cellulolytic enzymes and their production by recombinant technology is described, as well as uses of the enzymes and enzyme preparations.


Patent
Roal Oy | Date: 2013-05-24

The present invention relates to production of fermentable sugars from lignocellulosic material by enzymatic conversion. The fermentable sugars are useful e.g. in the production of bioethanol. Novel polypeptides having endoglucanase activity, polynucleotides encoding them and vectors and host cells containing the polynucleotides are disclosed. A method for treating cellulosic material with the novel endoglucanase as well as uses of the enzymes and enzyme preparations and a method of preparing them are described.


The present invention relates to the production of sugar hydrolysates from cellulosic material. The method may be used e.g. for producing fermentable sugars for the production of bioethanol from lignocellulosic material. Cellulolytic enzymes and their production by recombinant technology is described, as well as uses of the enzymes and enzyme preparations.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ENERGY.2008.3.2.2 | Award Amount: 16.26M | Year: 2010

The EC Directives set ambitious targets for mandatory 10 % biofuels share in road transport. 2nd generation biofuels will give significant benefits as ethanol blends in gasoline and synthetic biodiesel products. The innovative focus in the FibreEtOH project is to demonstrate for the first time globally in a commercial scale, a cost efficient paper fibre based ethanol production with high, > 70 % overall energy efficiency with high > 50 % green house gas reduction. 2nd generation ethanol production technology has been developed using mainly corn stover, straw or saw dust as raw material. So far reliable and cost efficient hydrolysis technology has been the bottleneck for large scale commercial success. By using paper fibres separated from commercial and municipal solid waste or de-inking sludge at paper mills, the hydrolysis process will be significantly easier as no pretreatment and special fractionation process is needed. It is estimated that such raw material is available in quantities for more than one million t/a ethanol production capacity. The EtOH production cost will be highly attractive due to the low price of the waste based raw material and the distillation steam compared to typical straw and wood EtOH production plants. The proposed demonstration plan with 20 000 m3/a ethanol production capacity will be build using 250 000 t/a waste from Helsinki metropolitan area in Finland. Biogas, district heat and electricity will be produced from the by-products. The site and environmental permits have already been granted. The ethanol will be used in Finland in dedicated E5 E85 blends optimising the ethanol fuels to cold climate conditions and tail pipe emissions reduction. The FibreEtOH-proposal will demonstrate innovations in a novel 2G EtOH production chain using optimized and cost-effective enzymatic hydrolysis process taking advantage of the adjacent enzyme production and the whole production concept with high overall process integration.

Loading Roal Oy collaborators
Loading Roal Oy collaborators