Entity

Time filter

Source Type

Finland

Viikari L.,University of Helsinki | Vehmaanpera J.,Roal Oy | Koivula A.,VTT Technical Research Center of Finland
Biomass and Bioenergy | Year: 2012

Lignocellulosic raw materials, not competing with food production, can provide environmental, economic, and strategic benefits for the production of biofuels. The cost of biomass-based biotechnical ethanol production has been recently reduced significantly, mainly due to advances in the conversion techniques; i.e. by improved enzymes and new yeast strains. Conversion of the cellulosic components into fermentable sugars is, however, still the major technological and economical bottleneck in the production of fuels or other high-volume commodity products from cellulosic biomass. Especially, the enzymatic hydrolysis still forms a major cost factor. The targets for reducing the costs of biotechnical conversion processes of lignocelluloses to ethanol can be divided into three categories: the costs of enzymes, the costs of produced sugars and the costs of ethanol production. The efficiencies of individual enzymes can be improved by designing enzymes with optimal domain structures and binding properties, and with higher specific activity, lower end-product inhibition and higher thermal stability, as well as by optimizing the production processes. The cost of the enzymatic hydrolysis is dependent on the efficiency, yield and costs of the pretreatment, synergistic action of cellulases and accessory enzymes, as well as on the needed amount of externally added enzymes. The costs of ethanol production are further affected by the yield, concentration and production rate of ethanol. This work reviews the major bottlenecks in the conversion process, as well as highlights recent approaches to overcome these problems. © 2012 Elsevier Ltd. Source


The present invention discloses novel polypeptides and enzyme preparations containing them, which improve the efficiency of cellulose and lignocellulose degradation even at elevated temperatures. The polypeptides can be produced using conventional recombinant DNA technologies. The related polynucleotides, vectors and host cells are also disclosed. The polypeptides and the enzyme preparations containing them are particularly useful in improving the efficiency of cellulose and lignocellulose degradation, in improving the quality of animal feed, in machine dishwashing applications, in detergent compositions, in pulp and paper, textile, food, baking or beverage industry.


The present invention relates to the production of sugar hydrolysates from cellulosic material. The method may be used e.g. for producing fermentable sugars for the production of bioethanol from lignocellulosic material. Cellulolytic enzymes and their production by recombinant technology is described, as well as uses of the enzymes and enzyme preparations.


The present invention relates to the production of sugar hydrolysates from cellulosic material. The method may be used, for example for producing fermentable sugars for the production of bioethanol from lignocellulosic material. Cellulolytic enzymes and their production by recombinant technology are described, as well as uses of the enzymes and enzyme preparations.


The present invention relates to the production of sugar hydrolysates from cellulosic material. The method may be used, for example for producing fermentable sugars for the production of bioethanol from lignocellulosic material. Cellulolytic enzymes and their production by recombinant technology are described, as well as uses of the enzymes and enzyme preparations.

Discover hidden collaborations