Time filter

Source Type

Vin K.,Risk Assessment Directorate French Agency for Food | Connolly A.,University College Dublin | McCaffrey T.,University of Ulster | McKevitt A.,University College Dublin | And 5 more authors.
Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment | Year: 2013

The aim of this study was to assess the dietary exposure of 13 priority additives in four European countries (France, Italy, the UK and Ireland) using the Flavourings, Additives and Contact Materials Exposure Task (FACET) software. The studied additives were benzoates (E210-213), nitrites (E249-250) and sulphites (E220-228), butylated hydroxytoluene (E321), polysorbates (E432-436), sucroses esters and sucroglycerides (E473-474), polyglycerol esters of fatty acids (E475), stearoyl-lactylates (E481-482), sorbitan esters (E493-494 and E491-495), phosphates (E338-343/E450-452), aspartame (E951) and acesulfame (E950). A conservative approach (based on individual consumption data combined with maximum permitted levels (Tier 2)) was compared with more refined estimates (using a fitted distribution of concentrations based on data provided by the food industry (Tier 3)). These calculations demonstrated that the estimated intake is below the acceptable daily intake (ADI) for nine of the studied additives. However, there was a potential theoretical exceedance of the ADI observed for four additives at Tier 3 for high consumers (97.5th percentile) among children: E220-228 in the UK and Ireland, E432-436 and E481-482 in Ireland, Italy and the UK, and E493-494 in all countries. The mean intake of E493-494 could potentially exceed the ADI for one age group of children (aged 1-4 years) in the UK. For adults, high consumers only in all countries had a potential intake higher than the ADI for E493-494 at Tier 3 (an additive mainly found in bakery wares). All other additives examined had an intake below the ADI. Further refined exposure assessments may be warranted to provide a more in-depth investigation for those additives that exceeded the ADIs in this paper. This refinement may be undertaken by the introduction of additive occurrence data, which take into account the actual presence of these additives in the different food groups. © 2013 Taylor & Francis. Source

Bemrah N.,Risk Assessment Directorate French Agency for Food | Vin K.,Risk Assessment Directorate French Agency for Food | Sirot V.,Risk Assessment Directorate French Agency for Food | Aguilar F.,Risk Assessment Directorate French Agency for Food | And 6 more authors.
Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment | Year: 2012

The results of the assessment of the dietary exposure to annatto, nitrites, tartaric acid and sulphites within the framework of the second French total diet study (TDS) are reported. These 4 additives were selected from the Bemrah et al. study [Bemrah N, Leblanc JC, Volatier JL. 2008. Assessment of dietary exposure in the French population to 13 selected food colours, preservatives, antioxidants, stabilizers, emulsifiers and sweeteners. Food Addit Contam B. 1(1):2-14] on 13 food additives which identified a possible health risk for annatto, sulphites and nitrites and a lack of data for tartaric acid. Among the composite samples selected for the whole TDS, 524 were analysed for additives (a sample was analysed for a given additive when it was identified as a major contributor for this additive only): 130 for tartaric acid, 135 for nitrites, 59 for annatto and 200 for sulphites. Estimated concentrations (minimum lower bound to maximum upper bound) vary nationally from 0 to 9 mg/kg for annatto, 0 to 420 mg/kg for tartaric acid, 0 to 108 mg/kg for sulphites and 0 to 3.4 mg/kg for nitrites. Based on the analytical results, the dietary exposure was calculated for adults and children, separately, using lower bound and upper bound assumptions. The European ADIs for these 4 additives were not exceeded except for the dietary exposure for sulphites among 2.9% of the adult population, where the major contributors were alcoholic drinks and especially wine under both hypotheses (lower and upper bound). © 2012 Copyright Taylor and Francis Group, LLC. Source

Discover hidden collaborations