Risk Assessment Directorate French Agency for Food

Maisons-Alfort, France

Risk Assessment Directorate French Agency for Food

Maisons-Alfort, France
SEARCH FILTERS
Time filter
Source Type

Vin K.,Risk Assessment Directorate French Agency for Food | Connolly A.,University College Dublin | McCaffrey T.,University of Ulster | McKevitt A.,University College Dublin | And 5 more authors.
Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment | Year: 2013

The aim of this study was to assess the dietary exposure of 13 priority additives in four European countries (France, Italy, the UK and Ireland) using the Flavourings, Additives and Contact Materials Exposure Task (FACET) software. The studied additives were benzoates (E210-213), nitrites (E249-250) and sulphites (E220-228), butylated hydroxytoluene (E321), polysorbates (E432-436), sucroses esters and sucroglycerides (E473-474), polyglycerol esters of fatty acids (E475), stearoyl-lactylates (E481-482), sorbitan esters (E493-494 and E491-495), phosphates (E338-343/E450-452), aspartame (E951) and acesulfame (E950). A conservative approach (based on individual consumption data combined with maximum permitted levels (Tier 2)) was compared with more refined estimates (using a fitted distribution of concentrations based on data provided by the food industry (Tier 3)). These calculations demonstrated that the estimated intake is below the acceptable daily intake (ADI) for nine of the studied additives. However, there was a potential theoretical exceedance of the ADI observed for four additives at Tier 3 for high consumers (97.5th percentile) among children: E220-228 in the UK and Ireland, E432-436 and E481-482 in Ireland, Italy and the UK, and E493-494 in all countries. The mean intake of E493-494 could potentially exceed the ADI for one age group of children (aged 1-4 years) in the UK. For adults, high consumers only in all countries had a potential intake higher than the ADI for E493-494 at Tier 3 (an additive mainly found in bakery wares). All other additives examined had an intake below the ADI. Further refined exposure assessments may be warranted to provide a more in-depth investigation for those additives that exceeded the ADIs in this paper. This refinement may be undertaken by the introduction of additive occurrence data, which take into account the actual presence of these additives in the different food groups. © 2013 Taylor & Francis.


Bemrah N.,Risk Assessment Directorate French Agency for Food | Vin K.,Risk Assessment Directorate French Agency for Food | Sirot V.,Risk Assessment Directorate French Agency for Food | Aguilar F.,Risk Assessment Directorate French Agency for Food | And 6 more authors.
Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment | Year: 2012

The results of the assessment of the dietary exposure to annatto, nitrites, tartaric acid and sulphites within the framework of the second French total diet study (TDS) are reported. These 4 additives were selected from the Bemrah et al. study [Bemrah N, Leblanc JC, Volatier JL. 2008. Assessment of dietary exposure in the French population to 13 selected food colours, preservatives, antioxidants, stabilizers, emulsifiers and sweeteners. Food Addit Contam B. 1(1):2-14] on 13 food additives which identified a possible health risk for annatto, sulphites and nitrites and a lack of data for tartaric acid. Among the composite samples selected for the whole TDS, 524 were analysed for additives (a sample was analysed for a given additive when it was identified as a major contributor for this additive only): 130 for tartaric acid, 135 for nitrites, 59 for annatto and 200 for sulphites. Estimated concentrations (minimum lower bound to maximum upper bound) vary nationally from 0 to 9 mg/kg for annatto, 0 to 420 mg/kg for tartaric acid, 0 to 108 mg/kg for sulphites and 0 to 3.4 mg/kg for nitrites. Based on the analytical results, the dietary exposure was calculated for adults and children, separately, using lower bound and upper bound assumptions. The European ADIs for these 4 additives were not exceeded except for the dietary exposure for sulphites among 2.9% of the adult population, where the major contributors were alcoholic drinks and especially wine under both hypotheses (lower and upper bound). © 2012 Copyright Taylor and Francis Group, LLC.


PubMed | Risk Assessment Directorate French Agency for Food
Type: Journal Article | Journal: Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment | Year: 2012

The results of the assessment of the dietary exposure to annatto, nitrites, tartaric acid and sulphites within the framework of the second French total diet study (TDS) are reported. These 4 additives were selected from the Bemrah et al. study [Bemrah N, Leblanc JC, Volatier JL. 2008. Assessment of dietary exposure in the French population to 13 selected food colours, preservatives, antioxidants, stabilizers, emulsifiers and sweeteners. Food Addit Contam B. 1(1):2-14] on 13 food additives which identified a possible health risk for annatto, sulphites and nitrites and a lack of data for tartaric acid. Among the composite samples selected for the whole TDS, 524 were analysed for additives (a sample was analysed for a given additive when it was identified as a major contributor for this additive only): 130 for tartaric acid, 135 for nitrites, 59 for annatto and 200 for sulphites. Estimated concentrations (minimum lower bound to maximum upper bound) vary nationally from 0 to 9 mg/kg for annatto, 0 to 420 mg/kg for tartaric acid, 0 to 108 mg/kg for sulphites and 0 to 3.4 mg/kg for nitrites. Based on the analytical results, the dietary exposure was calculated for adults and children, separately, using lower bound and upper bound assumptions. The European ADIs for these 4 additives were not exceeded except for the dietary exposure for sulphites among 2.9% of the adult population, where the major contributors were alcoholic drinks and especially wine under both hypotheses (lower and upper bound).


PubMed | Risk Assessment Directorate French Agency for Food
Type: Journal Article | Journal: Journal of agricultural and food chemistry | Year: 2014

In this study, French marine and freshwater fish perfluoroalkyl acid (PFAA) contamination are presented along with their fatty acid (FA) composition to provide further elements for a risk/benefit balance of fish consumption to be assessed. The 29 most consumed marine fish species were collected in four metropolitan French coastal areas in 2004 to constitute composite samples. Geographical differences in terms of consumed species and contamination level were taken into account. Three hundred and eighty-seven composite samples corresponding to 16 freshwater fish species collected between 2008 and 2010 in the six major French rivers or their tributaries were selected among the French national agency for water and aquatic environments freshwater fish sample library. The raw edible parts were analyzed for FA composition and PFAA contamination. Results show that freshwater fishes are more contaminated by PFAAs than marine fishes and do not share the same contamination profile. Freshwater fish contamination is mostly driven by perfluorooctane sulfonate (PFOS) (75%), whereas marine fish contamination is split between perfluorooctanoic acid (PFOA) (24%), PFOS (20%), perfluorohexanoic acid (PFHxA) (15%), perfluoropentanoic acid (PFHpA) (11%), and perfluorobutanoic acid (PFBA) (11%). Common carp, pike-perch, European perch, thicklip grey mullet, and common roach presented the most unfavorable balance profile due to their high level of PFAAs and low level of n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). These data could be used, if needed, in an updated opinion on fish consumption that takes into account PFAA contamination.


PubMed | Risk Assessment Directorate French Agency for Food
Type: | Journal: Environment international | Year: 2012

Chronic dietary exposure to pesticide residues was assessed for the French population using a total diet study (TDS) to take into account realistic levels in foods as consumed at home (table-ready). Three hundred and twenty-five pesticides and their transformation products, grouped into 283 pesticides according to their residue definition, were sought in 1235 composite samples corresponding to 194 individual food items that cover 90% of the adult and child diet. To make up the composite samples, about 19,000 food products were bought during different seasons from 2007 to 2009 in 36 French cities and prepared according to the food preparation practices recorded in the individual and national consumption survey (INCA2). The results showed that 37% of the samples contained one or more residues. Seventy-three pesticides were detected and 55 quantified at levels ranging from 0.003 to 8.7mg/kg. The most frequently detected pesticides, identified as monitoring priorities in 2006, were the post-harvest insecticides pirimiphos-methyl and chlorpyrifos-methyl-particularly in wheat-based products-together with chlorpyrifos, iprodione, carbendazim and imazalil, mainly in fruit and fruit juices. Dietary intakes were estimated for each subject of INCA2 survey, under two contamination scenarios to handle left-censored data: lower-bound scenario (LB) where undetected results were set to zero, and upper-bound (UB) scenario where undetected results were set to the detection limit. For 90% of the pesticides, exposure levels were below the acceptable daily intake (ADI) under the two scenarios. Under the LB scenario, which tends to underestimate exposure levels, only dimethoate intakes exceeded the ADI for high level consumers of cherry (0.6% of children and 0.4% of adults). This pesticide, authorised in Europe, and its metabolite were detected in both cherries and endives. Under the UB scenario, that overestimates exposure, a chronic risk could not be excluded for nine other pesticides (dithiocarbamates, ethoprophos, carbofuran, diazinon, methamidophos, disulfoton, dieldrin, endrin and heptachlor). For these pesticides, more sensitive analyses of the main food contributors are needed in order to refine exposure assessment.

Loading Risk Assessment Directorate French Agency for Food collaborators
Loading Risk Assessment Directorate French Agency for Food collaborators