Salt Lake City, UT, United States
Salt Lake City, UT, United States

Time filter

Source Type

Merrill D.R.,Ripple, Llc
Current Opinion in Solid State and Materials Science | Year: 2014

Implantable devices for recording and stimulation of the human nervous system offer promise for the treatment of disorders including spinal cord injury, stroke, traumatic brain injury, sensory and motor deficits, chronic pain, epilepsy, Parkinson's disease and amputation. While advances in neuroengineering devices have been impressive, often the expectations and desires for a chronically implantable device remain unrealized. In the face of engineering approaches which perform well on the bench or in acute implantations is an immune response which is well-tuned to recognize foreign bodies, including the materials chosen for our innovations. Recent years have demonstrated a co-evolution of engineering solutions for neural disorders and knowledge of underlying biological hurdles. This review describes the state-of-the-art for implantable neuroengineering devices used for electrical recording and stimulation, the tissue response to these devices, and emerging technologies and materials to mitigate the tissue response. The test methods for candidate materials and paths to the commercial market are briefly described. © 2014 Elsevier Ltd.


Grant
Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 3.00M | Year: 2012

DESCRIPTION (provided by applicant): The goal of this translational SBIR program is to create a small, implantable system for recording myoelectric signals from residual and reinnervated muscles of individuals with forearm and other amputations. The signals will be wirelessly coupled to an external receiver for controlling prostheses. Compared to conventional surface electrodes, this system will provide: 7 more channels for prosthesis control from a larger number of muscles in the residual limb, 7 improved specificity and repeatability for recording from individual muscles and muscle groups, 7 higher reliability and quality for the recorded signals under different socket conditions, 7 selective, consistent signals from deep muscles, especially in targeted reinnervation users, and 7 the ability to use gel, vacuum, and other prosthesis socket lining systems that do not easily accommodate surface electrodes. These multichannel recordings will also enable users to generate simultaneous multi-axis movementswith a more natural feel of control than existing myocontrollers that only actuate a single joint axis at a time. In Phase I, we will conduct a proof-of-concept animal study to validate the electrode and electronics design. We will compare the wireless multichannel EMG signals transmitted by an implanted prototype system to a standard percutaneous EMG wired system in canines during treadmill walking. In Phase II, we will complete the development of the implant, the external components, and the associated packaging for sterilization. At the end of the Phase II program, the system will be submitted for an IDE for a pilot clinical study in a small population of forearm amputees in Phase III.


Grant
Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 449.73K | Year: 2011

DESCRIPTION (provided by applicant): The goal of this translational SBIR program is to create a small, implantable system for recording myoelectric signals from residual and reinnervated muscles of individuals with forearm and other amputations. The signals will be wirelessly coupled to an external receiver for controlling prostheses. Compared to conventional surface electrodes, this system will provide: 7 more channels for prosthesis control from a larger number of muscles in the residual limb, 7 improved specificity and repeatability for recording from individual muscles and muscle groups, 7 higher reliability and quality for the recorded signals under different socket conditions, 7 selective, consistent signals from deep muscles, especially in targeted reinnervation users, and 7 the ability to use gel, vacuum, and other prosthesis socket lining systems that do not easily accommodate surface electrodes. These multichannel recordings will also enable users to generate simultaneous multi-axis movementswith a more natural feel of control than existing myocontrollers that only actuate a single joint axis at a time. In Phase I, we will conduct a proof-of-concept animal study to validate the electrode and electronics design. We will compare the wireless multichannel EMG signals transmitted by an implanted prototype system to a standard percutaneous EMG wired system in canines during treadmill walking. In Phase II, we will complete the development of the implant, the external components, and the associated packaging for sterilization. At the end of the Phase II program, the system will be submitted for an IDE for a pilot clinical study in a small population of forearm amputees in Phase III. PUBLIC HEALTH RELEVANCE: The implantable myoelectric sensor produced in this program will provide fundamental improvements in the usability and reliability of prosthetic arms, wrists, and hands. The multi-channel recordings provided by the system will also enable prostheses to produce coordinated, multi-joint movements with a more intuitive, natural feel of control for the user. In the long term, this technology may also help improve outcomes for pediatric prosthesis users by enabling systems that are simpler to learn during critical neurological development periods.


Grant
Agency: Department of Defense | Branch: Defense Advanced Research Projects Agency | Program: SBIR | Phase: Phase II | Award Amount: 998.54K | Year: 2014

The goal of this program is to develop a one-size-fits-many solution for implantable, wireless recording and stimulation with a variety of implantable electrode array types for neuroscience and neuroprosthesis research. The implants in this program will be enclosed in hermetic, ceramic packages with feed-throughs to accommodate up to 32 electrodes for each implant. The implants will be powered via inductive telemetry from an external transceiver placed directly over the implant, and data exchange will be accomplished through a combination of local inductive and transcutaneous infrared telemetry. The amplifier and telemetry will be programmable for sampling rates between 1 to 30 ksps at up to 16 bits resolution for supporting both low-frequency and higher frequency extracellular recordings. The local nature of these telemetry modes will allow multiple implants to be operated in proximity in the same subject. In parallel with this development, we will also complete a wearable data acquisition platform with programmable capabilities for real-time closed loop recording and stimulation. At the end of this program, the implants and external electronics will be sufficiently tested and qualified such that they can be approved for use with human studies for specific electrodes with minimal follow-on animal studies.


Patent
Ripple, Llc | Date: 2010-09-23

Disclosed herein are systems and methods for producing and using electrodes, which may be flexible and/or stretchable, and interconnection structures that can be used both externally and/or implanted within the body. Electrodes according to various embodiments disclosed herein may be produced by depositing patterned layers of insulating and conductive polymers to form multi-layer circuits. The conductive materials and layers in the structure can be exposed on the surface of the structures for use as electrodes. A plurality of electrodes may be formed into an electrode array. In various embodiments, electrode arrays may be associated with telemetry modules configured to wirelessly transmit data collected by the electrode array to a receiver module.


Patent
Ripple, Llc | Date: 2015-06-02

Disclosed herein are systems and methods for producing and using electrodes, which may be flexible and/or stretchable, and interconnection structures that can be used both externally and/or implanted within the body. Electrodes according to various embodiments disclosed herein may be produced by depositing patterned layers of insulating and conductive polymers to form multi-layer circuits. The conductive materials and layers in the structure can be exposed on the surface of the structures for use as electrodes. A plurality of electrodes may be formed into an electrode array. In various embodiments, electrode arrays may be associated with telemetry modules configured to wirelessly transmit data collected by the electrode array to a receiver module.


Patent
Ripple, Llc | Date: 2014-05-19

This disclosure relates to a systems and methods for control of external devices, such as a prosthesis, using biopotential signals from electrodes in communication with existing muscles or nerves of a patient. More specifically, but not exclusively, this disclosure relates to systems that include wireless transmission of biopotential signals and a multichannel bioamplifier configured to receive biopoential signals. The system may also be configured to stimulate excitable tissue within the body.


Disclosed herein are various embodiments of electrical stimulation systems configured to stimulate tissue in a subject. The system may include a controller configured to send at least one stimulation pattern to be implemented by the electrical stimulation system. The controller may include a first digital control interface. The system may also include a stimulation module that includes a second digital control interface configured to be in electrical communication with the first digital control interface. The stimulation circuitry may be configured to implement the at least one stimulation pattern as an analog stimulation signal based on an ongoing stream of digital commands received from the controller. The system may further comprise a percutaneous connector assembly configured to be coupled to a subject through the subjects skin. The percutaneous connector may include a second connector configured to couple to the first connector and a first electrode lead.


Trademark
Ripple, Llc | Date: 2016-10-26

Beer.


McDonnall D.,Ripple, Llc
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference | Year: 2012

We have developed a prototype implantable device for recording multiple independent channels of EMG and sending those signals wirelessly to an external receiver. This design records multichannel EMG signals for providing simultaneous multi-axis control of prosthetic limbs. This proof-of-concept study demonstrates benchtop performance of the bioamplifier in dry and soaked in saline configurations, as well as system performance in a short-term in vivo study in six dogs. The amplifier was shown to have an input-referred noise of 2.2 μV(RMS), a common mode rejection ratio greater than 55 dB, and neighboring channel isolation averaging 66 dB. The prototype devices were constructed of an amplifier ASIC along with discrete components for wireless function. These devices were coated in silicone and implanted for at least one week in each dog. EMG recorded from each animal as it walked down a hallway had very low noise and swing/stance phases of gait were clearly shown. This study demonstrates this device design can be used to amplify and transmit muscle signals.

Loading Ripple, Llc collaborators
Loading Ripple, Llc collaborators