Polk City, FL, United States
Polk City, FL, United States

Time filter

Source Type

Stanton J.J.,Baylor College of Medicine | Zong J.-C.,Viral Oncology Program | Eng C.,Baylor College of Medicine | Howard L.,Houston Zoo Inc. | And 16 more authors.
Journal of Zoo and Wildlife Medicine | Year: 2013

Elephant endotheliotropic herpesviruses (EEHVs) can cause fatal hemorrhagic disease in juvenile Asian elephants (Elephas maximus); however, sporadic shedding of virus in trunk washes collected from healthy elephants also has been detected. Data regarding the relationship of viral loads in blood compared with trunk washes are lacking, and questions about whether elephants can undergo multiple infections with EEHVs have not been addressed previously. Real-time quantitative polymerase chain reaction was used to determine the kinetics of EEHV1 loads, and genotypic analysis was performed on EEHV1 DNA detected in various fluid samples obtained from five Asian elephants that survived detectable EEHV1 DNAemia on at least two separate occasions. In three elephants displaying clinical signs of illness, preclinical EEHV1 DNAemia was detectable, and peak whole-blood viral loads occurred 3-8 days after the onset of clinical signs. In two elephants with EEHV1 DNAemia that persisted for 7-21 days, no clinical signs of illness were observed. Detection of EEHV1 DNA in trunk washes peaked approximately 21 days after DNAemia, and viral genotypes detected during DNAemia matched those detected in subsequent trunk washes from the same elephant. In each of the five elephants, two distinct EEHV1 genotypes were identified in whole blood and trunk washes at different time points. In each case, these genotypes represented both an EEHV1A and an EEHV1B subtype. These data suggest that knowledge of viral loads could be useful for the management of elephants before or during clinical illness. Furthermore, sequential infection with both EEHV1 subtypes occurs in Asian elephants, suggesting that they do not elicit cross-protective sterilizing immunity. These data will be useful to individuals involved in the husbandry and clinical care of Asian elephants. Copyright 2013 by American Association of Zoo Veterinarians.


Kiso W.K.,Smithsonian Conservation Biology Institute | Brown J.L.,Smithsonian Conservation Biology Institute | Siewerdt F.,University of Maryland University College | Schmitt D.L.,Missouri State University | And 4 more authors.
Journal of Andrology | Year: 2011

Artificial insemination plays a key role in the genetic management of elephants in zoos. Because freshly extended semen is typically used for artificial insemination in elephants, it has become imperative to optimize conditions for liquid storage and semen transport. The objectives of this study were to examine the interactions between different extenders and storage temperatures on sperm total motility, progressive motility, and acrosomal integrity in Asian (Elephas maximus) and African (Loxodonta africana) elephants. Ejaculates were collected by rectal massage, diluted using a splitsample technique in 5 semen extenders: TL-Hepes (HEP), Modena (MOD), Biladyl (BIL), TEST refrigeration medium (TES), and INRA96 (INR), maintained at 35°C, 22°C, or 4°C. At 0, 4, 6, 12, and 24 hours, aliquots were removed and assessed for sperm total motility, progressive motility, and acrosomal integrity. After 24 hours of storage, African elephant spermatozoa exhibited greater longevity and higher values in sperm quality parameters compared with those of Asian elephants. In both species, semen storage at 35°C resulted in a sharp decline in all sperm quality parameters after 4 hours of storage, whereas storage at 22°C and 4°C facilitated sperm survival. In Asian elephants, MOD and HEP were most detrimental, whereas BIL, TES, and INR maintained motility up to 12 hours when spermatozoa were cooled to 22°C or 4°C. In African elephants, there were no differences among extenders. All media maintained good sperm quality parameters at 22°C or 4°C. However, although MOD, BIL, and INR were most effective at lower temperatures, HEP and TES maintained sperm motility at all storage temperatures. This study demonstrated sperm sensitivity to components of various semen extenders and storage temperatures and offers recommendations for semen extender choices for liquid semen storage for both Asian and African elephants. © American Society of Andrology.


Lei R.,Grewcock Center for Conservation and Research | Brenneman R.A.,Grewcock Center for Conservation and Research | Schmitt D.L.,Missouri State University | Schmitt D.L.,Ringling Bros Center For Elephant Conservation | Louis E.E.,Grewcock Center for Conservation and Research
Journal of Zoology | Year: 2012

To assess genetic diversity in North American captive Asian elephants Elephas maximus, one mitochondrial DNA (mtDNA) segment was sequenced in combination with multilocus genotypes generated from 20 nuclear microsatellite loci for 201 individuals. The analysis of 627bp of the C-terminal of cyt b and the hypervariable left domain of the noncoding control region (labeled as MDL fragment) sequences revealed the existence of two mtDNA lineages (α and β clade). Analysis of the MDL confirmed that North American captive Asian elephants belong to either the previously characterized α or β clade. An average nucleotide diversity of 0.017 was observed for the Asian elephant mtDNA MDL fragment sequences. Regardless whether an individual possessed mtDNA α or β clade haplotype, all individuals belonged to one nuclear gene lineage for the two X-linked (BGN and PHKA2) and one Y-linked (AMELY) genes sequenced. Analysis of multilocus genotypes indicated an average observed and expected heterozygosities were 0.543 and 0.539 in wild-sourced and 0.579 and 0.547 in the captive-born Asian elephants, respectively. No subdivision among the sampled individuals was detected, including data partitioned by mtDNA clades. Aside from parent-offspring dyads, no further relationships were detected among wild-sourced and captive-born Asian elephants (average relatedness value <0.000). © 2011 The Authors. Journal of Zoology © 2011 The Zoological Society of London.


Abegglen L.M.,University of Utah | Caulin A.F.,University of Pennsylvania | Chan A.,University of Utah | Lee K.,University of Utah | And 10 more authors.
JAMA - Journal of the American Medical Association | Year: 2015

IMPORTANCE Evolutionary medicine may provide insights into human physiology and pathophysiology, including tumor biology. OBJECTIVE To identify mechanisms for cancer resistance in elephants and compare cellular response to DNA damage among elephants, healthy human controls, and cancer-prone patients with Li-Fraumeni syndrome (LFS). DESIGN, SETTING, AND PARTICIPANTS A comprehensive survey of necropsy datawas performed across 36 mammalian species to validate cancer resistance in large and long-lived organisms, including elephants (n = 644). The African and Asian elephant genomes were analyzed for potential mechanisms of cancer resistance. Peripheral blood lymphocytes from elephants, healthy human controls, and patients with LFS were tested in vitro in the laboratory for DNA damage response. The study included African and Asian elephants (n = 8), patients with LFS (n = 10), and age-matched human controls (n = 11). Human samples were collected at the University of Utah between June 2014 and July 2015. EXPOSURES Ionizing radiation and doxorubicin. MAIN OUTCOMES AND MEASURES Cancer mortality across specieswas calculated and compared by body size and life span. The elephant genome was investigated for alterations in cancer-related genes. DNA repair and apoptosis were compared in elephant vs human peripheral blood lymphocytes. RESULTS Across mammals, cancer mortality did not increase with body size and/or maximum life span (eg, for rock hyrax, 1% [95%CI, 0%-5%]; African wild dog, 8%[95%CI, 0%-16%]; lion, 2%[95%CI, 0%-7%]). Despite their large body size and long life span, elephants remain cancer resistant, with an estimated cancer mortality of 4.81% (95%CI, 3.14%-6.49%), compared with humans, who have 11% to 25%cancer mortality. While humans have 1 copy (2 alleles) of TP53, African elephants have at least 20 copies (40 alleles), including 19 retrogenes (38 alleles) with evidence of transcriptional activity measured by reverse transcription polymerase chain reaction. In response to DNA damage, elephant lymphocytes underwent p53-mediated apoptosis at higher rates than human lymphocytes proportional to TP53 status (ionizing radiation exposure: patients with LFS, 2.71% [95%CI, 1.93%-3.48%] vs human controls, 7.17%[95%CI, 5.91%-8.44%] vs elephants, 14.64%[95%CI, 10.91%-18.37%]; P <.001; doxorubicin exposure: human controls, 8.10% [95%CI, 6.55%-9.66%] vs elephants, 24.77%[95%CI, 23.0%-26.53%]; P <.001). CONCLUSIONS AND RELEVANCE Compared with other mammalian species, elephants appeared to have a lower-than-expected rate of cancer, potentially related to multiple copies of TP53. Compared with human cells, elephant cells demonstrated increased apoptotic response following DNA damage. These findings, if replicated, could represent an evolutionary-based approach for understanding mechanisms related to cancer suppression.


PubMed | Ronin Institute, University of Pennsylvania, University of Utah, Ringling Bros Center for Elephant Conservation and San Francisco State University
Type: Comparative Study | Journal: JAMA | Year: 2015

Evolutionary medicine may provide insights into human physiology and pathophysiology, including tumor biology.To identify mechanisms for cancer resistance in elephants and compare cellular response to DNA damage among elephants, healthy human controls, and cancer-prone patients with Li-Fraumeni syndrome (LFS).A comprehensive survey of necropsy data was performed across 36 mammalian species to validate cancer resistance in large and long-lived organisms, including elephants (n=644). The African and Asian elephant genomes were analyzed for potential mechanisms of cancer resistance. Peripheral blood lymphocytes from elephants, healthy human controls, and patients with LFS were tested in vitro in the laboratory for DNA damage response. The study included African and Asian elephants (n=8), patients with LFS (n=10), and age-matched human controls (n=11). Human samples were collected at the University of Utah between June 2014 and July 2015.Ionizing radiation and doxorubicin.Cancer mortality across species was calculated and compared by body size and life span. The elephant genome was investigated for alterations in cancer-related genes. DNA repair and apoptosis were compared in elephant vs human peripheral blood lymphocytes.Across mammals, cancer mortality did not increase with body size and/or maximum life span (eg, for rock hyrax, 1% [95% CI, 0%-5%]; African wild dog, 8% [95% CI, 0%-16%]; lion, 2% [95% CI, 0%-7%]). Despite their large body size and long life span, elephants remain cancer resistant, with an estimated cancer mortality of 4.81% (95% CI, 3.14%-6.49%), compared with humans, who have 11% to 25% cancer mortality. While humans have 1 copy (2 alleles) of TP53, African elephants have at least 20 copies (40 alleles), including 19 retrogenes (38 alleles) with evidence of transcriptional activity measured by reverse transcription polymerase chain reaction. In response to DNA damage, elephant lymphocytes underwent p53-mediated apoptosis at higher rates than human lymphocytes proportional to TP53 status (ionizing radiation exposure: patients with LFS, 2.71% [95% CI, 1.93%-3.48%] vs human controls, 7.17% [95% CI, 5.91%-8.44%] vs elephants, 14.64% [95% CI, 10.91%-18.37%]; P<.001; doxorubicin exposure: human controls, 8.10% [95% CI, 6.55%-9.66%] vs elephants, 24.77% [95% CI, 23.0%-26.53%]; P<.001).Compared with other mammalian species, elephants appeared to have a lower-than-expected rate of cancer, potentially related to multiple copies of TP53. Compared with human cells, elephant cells demonstrated increased apoptotic response following DNA damage. These findings, if replicated, could represent an evolutionary-based approach for understanding mechanisms related to cancer suppression.

Loading Ringling Bros Center For Elephant Conservation collaborators
Loading Ringling Bros Center For Elephant Conservation collaborators