Entity

Time filter

Source Type

Antwerpen, Belgium

Depuydt C.E.,RIATOL | Criel A.M.,RIATOL | Benoy I.H.,RIATOL | Arbyn M.,Scientific Institute of Public Health | And 3 more authors.
Journal of Cellular and Molecular Medicine | Year: 2012

Persistent high-risk human papillomavirus (HPV) infection is strongly associated with the development of high-grade cervical intraepithelial neoplasia or cancer (CIN3+). However, HPV infection is common and usually transient. Viral load measured at a single time-point is a poor predictor of the natural history of HPV infection. The profile of viral load evolution over time could distinguish HPV infections with carcinogenic potential from infections that regress. A case-cohort natural history study was set-up using a Belgian laboratory database processing more than 100,000 liquid cytology specimens annually. All cytology leftovers were submitted to real-time PCR testing identifying E6/E7 genes of 17 HPV types, with viral load expressed as HPV copies/cell. Samples from untreated women who developed CIN3+ (n = 138) and women with transient HPV infection (n = 601) who contributed at least three viral load measurements were studied. Only single-type HPV infections were selected. The changes in viral load over time were assessed by the linear regression slope for the productive and/or clearing phase of infection in women developing CIN3+ and women with transient infection respectively. Transient HPV infections generated similar increasing (0.21 copies/cell/day) and decreasing (-0.28 copies/cell/day) viral load slopes. In HPV infections leading to CIN3+, the viral load increased almost linearly with a slope of 0.0028 copies/cell/day. Difference in slopes between transient infections and infections leading to CIN3+ was highly significant (P < .0001). Serial type-specific viral load measurements predict the natural history of HPV infections and could be used to triage women in HPV-based cervical cancer screening. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd. Source


Depuydt C.E.,RIATOL | Benoy I.H.,RIATOL | Beert J.F.A.,RIATOL | Criel A.M.,RIATOL | And 3 more authors.
Journal of Clinical Microbiology | Year: 2012

To be acceptable for use in cervical cancer screening, a new assay that detects DNA of high-risk human papillomavirus (hrHPV) types must demonstrate high reproducibility and performance not inferior to that of a clinically validated HPV test. In the present study, a real-time quantitative PCR (qPCR) assay targeting the E6 and E7 genes of hrHPV was compared with Hybrid Capture 2 (hc2) in a Belgian cervical cancer screening setting. In women >30 years old, the sensitivity and specificity for intraepithelial neoplasias of grade 2 or worse (93 cases of cervical intraepithelial neoplasias of grade 2 or worse (CIN2+) and 1,207 cases of no CIN or CIN1) were 93.6% and 95.6%, respectively, and those of hc2 were 83.9% and 94.5%, respectively {relative sensitivity of qPCR/hc2 = 1.12 [95% confidence interval (CI), 1.01 to 1.23]; relative specificity = 1.01 [95% CI, 0.99 to 1.03]}. A score test showed that the sensitivity (P < 0.0001) and specificity (P < 0.0001) of the qPCR assay were not inferior to those of hc2 at the required thresholds of 90% and 98%, respectively. The overall agreement of hrHPV positivity between the two runs of the qPCR tests was 98.7% (95% CI, 97.5 to 99.4%), with a kappa value of 0.96 (95% CI, 0.83 to 1.00). The qPCR assay used in this study can be considered a reliable HPV assay that fulfills the clinical validation criteria defined for use in cervical cancer screening. Copyright © 2012, American Society for Microbiology. All Rights Reserved. Source

Discover hidden collaborations