Greensboro, NC, United States

RF Micro Devices

www.rfmd.com
Greensboro, NC, United States

RF Micro Devices , was an American company that designed and manufactured high-performance radio frequency systems and solutions for applications that drive wireless and broadband communications. Headquartered in Greensboro, North Carolina, RFMD traded on the NASDAQ under the symbol RFMD. The Company was founded in Greensboro, North Carolina, in 1991. RF Micro has 3500 employees, 1500 of them in Guilford County, North Carolina.The company's products, predominantly radio frequency integrated circuits and packaged modules that utilize them, were used in cellular networks and mobile phones, for wireless connectivity such as wireless LAN, GPS and Bluetooth, in cable modems and cable TV infastructure, and for other applications including military radar. The most important applications in terms of sales were GaAs-based power amplifiers and antenna control solutions used in mobile phones , WiFi RF front-ends and components used in wireless infrastructure equipment.The company announced in February 2014 that it would merge with TriQuint Semiconductor. On January 2nd, 2015, RFMD and Triquint jointly announced that they had completed their merger of equals to form Qorvo , and that Qorvo would start trading on the NASDAQ Global Stock Market starting from that day. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

The present disclosure relates to antenna swapping for a wireless, e.g., cellular, radio system. In particular, embodiments of a single-die antenna swapping switching circuit are disclosed. In some embodiments, the single-die antenna swapping switching circuit enables antenna swapping in a wireless device using only two coaxial cables or transmission line connections regardless of an order of an antenna multiplexer of the wireless device. This results in significant space savings, particularly as the order of the antenna multiplexer increases, compared to antenna swapping techniques that require a pair of coaxial cables or transmission lines for each order of the antenna multiplexer. In addition, the single-die antenna swapping switching circuit is designed to be located between a radio front-end system and the antenna multiplexer such that intermodulation distortion and harmonics resulting from the switches comprised in the single-die antenna swapping switching circuit are mitigated.


Patent
RF Micro Devices | Date: 2016-03-31

A micro-electrical-mechanical system (MEMS) guided wave device includes a plurality of electrodes arranged below a piezoelectric layer (e.g., either embedded in a slow wave propagation layer or supported by a suspended portion of the piezoelectric layer) and configured for transduction of a lateral acoustic wave in the piezoelectric layer. The piezoelectric layer permits one or more additions or modifications to be made thereto, such as trimming (thinning) of selective areas, addition of loading materials, sandwiching of piezoelectric layer regions between electrodes to yield capacitive elements or non-linear elastic convolvers, addition of sensing materials, and addition of functional layers providing mixed domain signal processing utility.


A micro-electrical-mechanical system (MEMS) guided wave device includes a plurality of electrodes arranged below a piezoelectric layer (e.g., either embedded in a slow wave propagation layer or supported by a suspended portion of the piezoelectric layer) and configured for transduction of a lateral acoustic wave in the piezoelectric layer. The piezoelectric layer permits one or more additions or modifications to be made thereto, such as trimming (thinning) of selective areas, addition of loading materials, sandwiching of piezoelectric layer regions between electrodes to yield capacitive elements or non-linear elastic convolvers, addition of sensing materials, and addition of functional layers providing mixed domain signal processing utility.


Patent
RF Micro Devices | Date: 2016-03-31

A micro-electrical-mechanical system (MEMS) guided wave device includes a plurality of electrodes arranged below a piezoelectric layer (e.g., either embedded in a slow wave propagation layer or supported by a suspended portion of the piezoelectric layer) and configured for transduction of a lateral acoustic wave in the piezoelectric layer. The piezoelectric layer permits one or more additions or modifications to be made thereto, such as trimming (thinning) of selective areas, addition of loading materials, sandwiching of piezoelectric layer regions between electrodes to yield capacitive elements or non-linear elastic convolvers, addition of sensing materials, and addition of functional layers providing mixed domain signal processing utility.


Patent
RF Micro Devices | Date: 2016-03-31

A micro-electrical-mechanical system (MEMS) guided wave device includes a plurality of electrodes arranged below a piezoelectric layer (e.g., either embedded in a slow wave propagation layer or supported by a suspended portion of the piezoelectric layer) and configured for transduction of a lateral acoustic wave in the piezoelectric layer. The piezoelectric layer permits one or more additions or modifications to be made thereto, such as trimming (thinning) of selective areas, addition of loading materials, sandwiching of piezoelectric layer regions between electrodes to yield capacitive elements or non-linear elastic convolvers, addition of sensing materials, and addition of functional layers providing mixed domain signal processing utility.


Patent
RF Micro Devices | Date: 2016-03-31

A micro-electrical-mechanical system (MEMS) guided wave device includes a plurality of electrodes arranged below a piezoelectric layer (e.g., either embedded in a slow wave propagation layer or supported by a suspended portion of the piezoelectric layer) and configured for transduction of a lateral acoustic wave in the piezoelectric layer. The piezoelectric layer permits one or more additions or modifications to be made thereto, such as trimming (thinning) of selective areas, addition of loading materials, sandwiching of piezoelectric layer regions between electrodes to yield capacitive elements or non-linear elastic convolvers, addition of sensing materials, and addition of functional layers providing mixed domain signal processing utility.


A method of fabricating a bonded wafer with low carrier lifetime in silicon comprises providing a silicon substrate having opposing top and bottom surfaces, modifying a top portion of the silicon substrate to reduce carrier lifetime in the top portion relative to the carrier lifetime in portions of the silicon substrate other than the top portion, bonding a piezoelectric layer having opposing top and bottom surfaces separated by a distance T over the top surface of the silicon substrate, and providing a pair of electrodes having fingers that are inter-digitally dispersed on a top surface of the piezoelectric layer, the electrodes comprising a portion of a Surface Acoustic Wave (SAW) device. The modifying and bonding steps may be performed in any order. The modified top portion of the silicon substrate prevents the creation of a parasitic conductance within that portion during operation of the SAW device.


Patent
RF Micro Devices | Date: 2016-04-28

Embodiments of radio frequency (RF) filtering circuitry are disclosed. In one embodiment, the RF filtering circuitry includes a first port, a second port, a first RF filter path, and a second RF filter path. The first RF filter path is connected between the first port and the second port and includes at least a pair of weakly coupled resonators. The weakly coupled resonators are configured such that a first transfer response between the first port and the second port defines a first passband. The second RF filter path is coupled to the first RF filter path and is configured such that the first transfer response between the first port and the second port defines a stopband adjacent to the first passband without substantially increasing ripple variation of the first passband defined by the first transfer response.


Patent
RF Micro Devices | Date: 2016-03-31

A bonded wafer with low carrier lifetime in silicon comprises a silicon substrate having opposing top and bottom surfaces, the structure of the silicon in a top portion of the silicon substrate having been modified to reduce the carrier lifetime in the top portion relative to the carrier lifetime in portions of the silicon substrate other than the top portion; a piezoelectric layer bonded over the top surface of the silicon substrate and having opposing top and bottom surfaces separated by a distance T; and a pair of electrodes having fingers that are inter-digitally dispersed on the top surface of the piezoelectric layer in a pattern having a center-to-center distance D between adjacent fingers of the same electrode, the electrodes comprising a portion of a Surface Acoustic Wave (SAW) device. Modification of the top portion of the silicon substrate prevents the creation of a parasitic conductance within the top portion of the silicon substrate during operation of the SAW device.


Stealth-dicing-compatible devices and methods to prevent acoustic backside reflections on acoustic wave devices are disclosed. An acoustic wave device comprises a substrate having opposing top and bottom surfaces, where a first portion of the bottom surface has a higher roughness than a second portion of the bottom surface, and an acoustic resonator over the top surface of the substrate. The acoustic resonator comprises a piezoelectric layer having opposing top and bottom surfaces and a plurality of electrodes, at least some of which are disposed on the top surface of the piezoelectric layer. The first portion of the bottom surface of the substrate is below and opposite from the acoustic resonator, and the second portion of the bottom surface of the substrate is not located below and opposite from the acoustic resonator. Multiple first portions, each separated from the other by second portions, may exist.

Loading RF Micro Devices collaborators
Loading RF Micro Devices collaborators