Tacoma, WA, United States
Tacoma, WA, United States

Time filter

Source Type

An oxygenated ionic aqueous fluid composition comprising oxygen-containing microbubbles predominantly having an average diameter of less than 100 nanometers. The oxygen is present in an amount of at least 15 ppm at atmospheric pressure.The fluids can be suitable for food and pharmaceutical applications, as well as for bioreactor systems.


Provided are methods for enhancing exercise (e.g., intense, eccentric, elevated temperature, repetitive, aerobic, and high altitude) performance, comprising administering electrokinetically-altered aqueous fluids comprising an ionic aqueous solution of stably configured charge-stabilized oxygen-containing nanostructures predominantly having an average diameter of less than 100 nanometers. In certain aspects, enhancing exercise performance comprises at least one of: reducing plasma inflammatory cytokines (e.g., IFN-alpha, ENA-78 and BDNF); ameliorating muscle/tendon damage or enhancing muscle/tendon recovery; reducing biomarkers of exercise-induced muscle injury (e.g., CK, plasma myoglobin); ameliorating exercise induced tendinosis, tendonitis, tenosynovitis, avulsion, and tendon strain associated with chronic repetitive movement or enhancing recovering therefrom; increasing VO_(2 )max; decreasing RPE; reducing blood lactate; preserving muscle contractile function (e.g., maximal force, joint ROM); reducing muscle soreness; ameliorating onset of fatigue in an exercising subject. Improved methods for producing electrokinetically altered aqueous fluids (including sports beverages) are also provided.


Provided are electrokinetically-altered fluids (gas-enriched electrokinetic fluids) comprising an ionic aqueous solution of charge-stabilized oxygen-containing nanostructures in an amount sufficient to provide modulation of at least one of cellular membrane potential and cellular membrane conductivity, and therapeutic compositions and methods for use in treating diabetes and diabetes-associated conditions or disorders (e.g., insulin resistance), or symptoms thereof. Provided are electrokinetically-altered ionic aqueous fluids optionally in combination with other therapeutic agents. Particular aspects provide for regulating or modulating intracellular signal transduction associated with said inflammatory responses by modulation of at least one of cellular membranes, membrane potential, membrane proteins such as membrane receptors, including but not limited to G-Protein Coupled Receptors (GPCR), and intercellular junctions (e.g., tight junctions, gap junctions, zona adherins and desmasomes). Other embodiments include particular routes of administration or formulations for the electrokinetically-altered fluids (e.g., electrokinetically-altered gas-enriched fluids and solutions) and therapeutic compositions.


Patent
Revalesio | Date: 2014-07-21

Provided are electrokinetically-altered fluids (e.g., gas-enriched electrokinetic fluids) comprising an ionic aqueous solution of charge-stabilized oxygen-containing nanostructures in an amount sufficient to provide modulation of at least one of cellular membrane potential and cellular membrane conductivity, and therapeutic compositions and methods for use in treating a wound to a surface tissue or a symptom thereof. The electrokinetically-altered fluids or therapeutic compositions and methods include electrokinetically-altered ionic aqueous fluids optionally in combination with other therapeutic agents. Particular aspects provide for regulating or modulating intracellular signal transduction associated with said inflammatory responses by modulation of at least one of cellular membranes, membrane potential, membrane proteins such as membrane receptors, including but not limited to G-Protein Coupled Receptors (GPCR), and intercellular junctions (e.g., tight junctions, gap junctions, zona adherins and desmasomes). Other embodiments include particular routes of administration or formulations for the electrokinetically-altered fluids (e.g., electrokinetically-altered gas-enriched fluids and solutions) and therapeutic compositions.


Provided are methods for enhancing hippocampal plasticity and hippocampal-mediated learning and memory, and/or enhancing the synaptic maturation of neurons, and/or optimizing or enhancing neuronal synaptic transmission, and/or enhancing intracellular oxygen delivery or utilization, and/or enhancing ATP synthesis, comprising administration, to a subject in need thereof of a sufficient amount over a sufficient time, of an ionic aqueous solution of charge-stabilized oxygen-containing nanostructures (e.g., nanobubbles) having an average diameter of less than 100 nm (e.g., in at least one subject group selected from but not limited to normal subjects, subjects recovering from neurological trauma (e.g., accidents or injury to the brain, stroke, oxygen deprivation, drowning, and asphyxia), and subjects with learning disorders (e.g., dyslexia, dyscalculia, dysgraphia, dyspraxia (sensory integration disorder), dysphasia/aphasia, auditory processing disorder, non-verbal learning disorder, visual processing disorder, and attention deficit disorder (ADD)).


Patent
Revalesio | Date: 2014-07-21

Provided are electrokinetically-altered aqueous fluids (e.g., gas-enriched electrokinetic fluids) comprising an ionic aqueous solution of charge-stabilized oxygen-containing nanostructures in an amount sufficient to provide modulation of at least one of cellular membrane potential and cellular membrane conductivity, and therapeutic compositions and methods for use in treating an irritation, infection or inflammatory eye condition, comprising administering to, by contacting the eye of a subject in need thereof a therapeutically effective amount of an electrokinetically-altered aqueous fluid. The electrokinetically-altered fluids or therapeutic compositions and methods include electrokinetically-altered ioinic aqueous fluids optionally in combination with other therapeutic agents. Other embodiments include particular routes of administration or formulations for the electrokinetically-altered fluids (e.g., electrokinetically-altered gas-enriched fluids) and therapeutic compositions for use in treating eye conditions. Certain embodiments relate to cosmetic and/or therapeutic fluids and/or methods of treatment utilizing the fluids to treat a cosmetic and/or therapeutic symptom related to eye conditions and/or diseases.


A mixing device for mixing a first and second material together to create an output mixture. The device includes a first chamber containing the first material coupled to a mixing chamber defined between a rotor and a stator. The rotor is disposed inside the stator and rotates therein about an axis of rotation. The first chamber houses an internal pump configured to pump the first material from the first chamber into the mixing chamber. The pump may be configured to impart a circumferential velocity into the first material before it enters the mixing chamber. At least one of the rotor and stator have a plurality of through-holes through which the second material is provided to the mixing chamber. Optionally, a second chamber is coupled to the mixing chamber. The second chamber may house an internal pump configured to pump the output material from the mixing chamber into the second chamber.


Provided are systems and methods for accurate size determination of nanoparticles and nanobubbles, comprising detecting multiple repeated translocations of a captured nanoparticle or nanobubble across the sensing zone of a conical nanopore in fluid communication with a fluid comprising nanoparticles or nanobubbles.


Provided are methods for treating pre-neuronal loss abnormalities in synaptic function, comprising administrating to a subject having neurons, an ionic aqueous solution comprising charge-stabilized oxygen-containing nanostructures having an average diameter of less than 100 nm in an amount and for a time period sufficient for preventing or reducing abnormalities in synaptic function that precede neuronal loss and/or NFTs formation in taupathies. Also provided are methods for treating pre-neuronal loss abnormalities in synaptic function, comprising contacting neurons in vitro or ex vivo with an ionic aqueous solution comprising charge-stabilized oxygen-containing nanostructures having an average diameter of less than 100 nm in an amount and for a time period sufficient for preventing or reducing abnormalities in synaptic function that precede neuronal loss and/or NFTs formation.


Patent
Revalesio | Date: 2015-03-16

Provided are electrokinetically-altered fluids (e.g., gas-enriched (e.g., oxygen-enriched) electrokinetic fluids) comprising an ionic aqueous solution of charge-stabilized oxygen-containing nanostructures in an amount sufficient to provide, upon contact with a cell, modulation of at least one of cellular membrane potential and cellular membrane conductivity, and therapeutic compositions and methods for using same in treating digestive disorders or at least one symptom thereof. The electrokinetically altered fluid compositions and methods include electrokinetically-altered ionic aqueous fluids optionally in combination with other therapeutic agents. Particular aspects provide for regulating or modulating intracellular signal transduction associated with said digestive disorders by modulation of at least one of cellular membranes, membrane potential, membrane proteins such as membrane receptors, including but not limited to G-Protein Coupled Receptors (GPCR), and intercellular junctions (e.g., tight junctions, gap junctions, zona adherins and desmasomes). Other embodiments include particular routes of administration or formulations for the electrokinetically-altered fluids and therapeutic compositions.

Loading Revalesio collaborators
Loading Revalesio collaborators