Time filter

Source Type

Roberts H.H.,Louisiana State University | Shedd W.,Ocean energy | Hunt J.,Retired
Deep-Sea Research Part II: Topical Studies in Oceanography | Year: 2010

Use of DSV ALVIN (2006) and ROV JASON II (2007) provided access to never observed or sampled sites of fluid-gas expulsion from the little-studied middle and lower continental slope of the northern Gulf of Mexico (below water depths of 1000. m). Dives were focused on 15 locations selected by 3-D seismic surface attributes and shallow subsurface geologic analyses. The linkage between highly positive seafloor reflectivity and hard bottoms proved to be an efficient indicator of potential sites of interest. Through observation and sampling of reflective sites, starting in the mid-1980s, it has become apparent that most hard bottoms on the northern Gulf's continental slope are created by the precipitation of authigenic carbonates at hydrocarbon seep sites. Access to the Bureau of Ocean Energy Management, Regulation and Enforcement's extraordinary archive of slope-wide 3-D seismic data made efficient site selection possible. From thousands of sites that display the characteristics of fluid-gas expulsion, 15 were observed and sampled during the 2006 and 2007 cruises. Water depths in which these 15 sites were located ranged from ~2750 to ~970 m. All sites exhibited evidence of hydrocarbon seepage or more rapid venting. Chemosynthetic organisms, authigenic carbonates, barite, gas hydrates, highly anoxic surface sediments, brine pools, and hydrocarbon-laced brine flows were identified and sampled. High-resolution acoustic Autonomous Underwater Vehicle (AUV) data, including multibeam bathymetry, side-scan sonar swaths, and chirp sonar subbottom profiles, were collected at four locations (AC601, WR269, GC852, and AT340). Data sets from the 2006 and 2007 dives resulted in a greatly improved understanding of both cross-slope and along-slope variability in the characteristics of fluid-gas expulsion sites and associated habitats. Our studies confirmed the importance of fluid-gas expulsion processes for sustaining chemosynthetic communities and impacting seabed geology on the middle and lower continental slope of the northern Gulf of Mexico. © 2010 Elsevier Ltd. Source

Mintzer S.,Thomas Jefferson University | French J.A.,New York University | Perucca E.,University of Pavia | Cramer J.A.,Yale University | And 3 more authors.
The Lancet Neurology | Year: 2015

Antiepileptic drugs (AEDs) are the only neurotherapeutics for which regulatory approval is consistently separated into monotherapy or adjunctive-therapy indications. Because head-to-head comparisons of AEDs (used in the European Union to approve drugs for monotherapy) have not shown substantial differences in efficacy between drugs, FDA approval for use of an AED as monotherapy has typically been based on trials with novel designs that have been criticised for reasons of ethics and clinical relevance. Many new-generation AEDs have not been approved for monotherapy, causing drug labelling and real-world use to be increasingly inconsistent, with negative consequences for patients. The regulatory requirement for separate monotherapy and adjunctive-therapy indications in epilepsy is unnecessarily restrictive. We recommend that regulatory agencies approve AEDs for the treatment of specific seizure types or epilepsy syndromes, irrespective of concomitant drug use. © 2015 Elsevier Ltd. Source

Yopst C.G.,Retired
The journal of pastoral care & counseling : JPCC | Year: 2015

Compassion is a primary catalyst motivating positive human relationships, especially of those less fortunate. Our rhythms Expand-Contract of our own non-verbal body joints movements and of the law of counter-balance, enable us to identify which of nine innate affects-emotions is directing the body's movements. With this reading, a trained person can synchronize choreography of these into fully authentic compassion between two or more persons. Primary references for this are the late Silvan S. Tomkins's four volumes "Affect Imagery Consciousness," and choreographers the late Rudolf Laban, Warren Lamb, Irmgard Bartenieff, and Marian Chace. Professionals, clinicians, and laity counselors can all use these. © The Author(s) 2015. Source

Buesa R.J.,Retired
Annals of Diagnostic Pathology | Year: 2010

The information from 221 US histology laboratories (histolabs) and 104 from 24 other countries with workloads from 600 to 116 000 cases per year was used to calculate productivity standards for 23 technical and 27 nontechnical tasks and for 4 types of work flow indicators. The sample includes 254 human, 40 forensic, and 31 veterinary pathology services. Statistical analyses demonstrate that most productivity standards are not different between services or worldwide. The total workload for the US human pathology histolabs averaged 26 061 cases per year, with 54% between 10 000 and less than 30 000. The total workload for 70% of the histolabs from other countries was less than 20 000, with an average of 15 226 cases per year. The fundamental manual technical tasks in the histolab and their productivity standards are as follows: grossing (14 cases per hour), cassetting (54 cassettes per hour), embedding (50 blocks per hour), and cutting (24 blocks per hour). All the other tasks, each with their own productivity standards, can be completed by auxiliary staff or using automatic instruments. Depending on the level of automation of the histolab, all the tasks derived from a workload of 25 cases will require 15.8 to 17.7 hours of work completed by 2.4 to 2.7 employees with 18% of their working time not directly dedicated to the production of diagnostic slides. This article explains how to extrapolate this productivity calculation for any workload and different levels of automation. The overall performance standard for all the tasks, including 8 hours for automated tissue processing, is 3.2 to 3.5 blocks per hour; and its best indicator is the value of the gross work flow productivity that is essentially dependent on how the work is organized. This article also includes productivity standards for forensic and veterinary histolabs, but the staffing benchmarks for histolabs will be the subject of a separate article. © 2010 Elsevier Inc. All rights reserved. Source

Buesa R.J.,Retired
Annals of Diagnostic Pathology | Year: 2010

This article summarizes annual workloads for staff positions and work flow productivity (WFP) values from 247 human pathology, 31 veterinary, and 35 forensic histology laboratories (histolabs). There are single summaries for veterinary and forensic histolabs, but the data from human pathology are divided into 2 groups because of statistically significant differences between those from Spain and 6 Hispano American countries (SpHA) and the rest from the United States and 17 other countries. The differences reflect the way the work is organized, but the histotechnicians and histotechnologists (histotechs) from SpHA have the same task productivity levels as those from any other country (Buesa RJ. Productivity standards for histology laboratories. [YADPA 50 552]). The information is also segregated by groups of histolabs with increasing workloads; this aspect also showed statistical differences. The information from human pathology histolabs other than those from SpHA were used to calculate staffing annual benchmarks for pathologists (from 3700 to 6500 cases depending on the histolab annual workload), pathology assistants (20 000 cases), staff histotechs (9900 blocks), cutting histotechs (15 000 blocks), histotechs doing special procedures (9500 slides if done manually or 15 000 slides with autostainers), dieners (100 autopsies), laboratory aides and transcriptionists (15 000 cases each), and secretaries (20 000 cases). There are also recommendations about workload limits for supervisory staff (lead techs and supervisors) and when neither is required. Each benchmark was related with the productivity of the different tasks they include (Buesa RJ. Productivity standards for histology laboratories. [YADPA 50 552]) to calculate the hours per year required to complete them. The relationship between workload and benchmarks allows the director of pathology to determine the staff needed for the efficient operation of the histolab. © 2010 Elsevier Inc. All rights reserved. Source

Discover hidden collaborations