Time filter

Source Type

Minato-ku, Japan

Steinmetz S.A.,North Carolina State University | Steinmetz S.A.,King Abdullah University of Science and Technology | Herrington J.S.,U.S. Environmental Protection Agency | Herrington J.S.,Restek Corporation | And 5 more authors.
Proceedings of the Combustion Institute | Year: 2013

Crude glycerol is an abundant by-product of biodiesel production. As volumes of this potential waste grow, there is increasing interest in developing new value added uses. One possible use, as a boiler fuel for process heating, offers added advantages of energy integration and fossil fuel substitution. However, challenges to the use of crude glycerol as a boiler fuel include its low energy density, high viscosity, and high autoignition temperature. We have previously shown that a refractory-lined, high swirl burner can overcome challenges related to flame ignition and stability. However, critical issues related to ash behavior and the possible formation of acrolein remained. The work presented here indicates that the presence of dissolved catalysts used during the esterification and transesterification processes results in extremely large amounts of inorganic species in the crude glycerol. For the fuels examined here, the result is a submicron fly ash comprised primarily of sodium carbonates, phosphates, and sulfates. These particles report to a well-developed accumulation mode (0.3-0.7 μm diameter), indicating extensive ash vaporization and particle formation via nucleation, condensation, and coagulation. Particle mass emissions were between 2 and 4 g/m3. These results indicate that glycerol containing soluble catalyst is not suitable as a boiler fuel. Fortunately, process improvements are currently addressing this issue. Additionally, acrolein is of concern due to its toxicity, and is known to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA canister-based sampling method followed by GC-MS analysis designed for ambient measurements. Results indicate crude glycerol combustion produces relatively small amounts of acrolein (∼15 ppbv) and other volatile organic compounds, with emissions comparable to those from natural gas combustion. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Kohl A.,U.S. Army | Cochran J.,Restek Corporation | Cropek D.M.,U.S. Army
Journal of Chromatography A | Year: 2010

The most commonly used military fog oil is characterized by comprehensive two-dimensional gas chromatography (GC×GC) coupled to either Flame Ionization Detection (FID) or Time-of-Flight Mass Spectrometric Detection (TOFMS) to advance the knowledge regarding the complete chemical makeup of this complex matrix. Two different GC×GC column sets were investigated, one employing a non-polar column combined with a shape selective column and the other an inverse column set (medium-polar/non-polar). The inverse set maximizes the use of the two-dimensional separation space and segregates aliphatic from aromatic fractions. The shape selective column best separates individual polycyclic aromatic hydrocarbons (PAHs) from the bulk oil. The results reveal that fog oil (FO) is composed mainly of aliphatic compounds ranging from C10 to C30, where naphthenes comprise the major fraction. Although many different species of aromatics are present, they constitute only a minor fraction in this oil, and no conjugated PAHs are found. The composition of chemically similar aliphatic constituents limits the analytical power of silica gel fractionation and GC-MS analysis to characterize FO. Among the aliphatic compounds identified are alkanes, cyclohexanes, hexahydroindanes, decalins, adamantanes, and bicyclohexane. The aromatic fraction is composed of alkylbenzene compounds, indanes, tetrahydronaphthalenes, partially hydrogenated PAHs, biphenyls, dibenzofurans and dibenzothiophenes. This work represents the best characterization of military fog oil to date. As the characterization process shows, information on such complex samples can only be parsed using a combination of sample preprocessing steps, multiple detection schemes, and an intelligent selection of column chemistries.

The costly damage airborne trimethylsilanol (TMS) exacts on optics in the semiconductor industry has resulted in the demand for accurate and reliable methods for measuring TMS at trace levels (i.e., parts per trillion, volume per volume of air [pptv] [∼ng/m3]). In this study I developed a whole air canister-based approach for field sampling trimethylsilanol in air, as well as a preconcentration gas chromatography/mass spectrometry laboratory method for analysis. The results demonstrate clean canister blanks (0.06 pptv [0.24 ng/m3], which is below the detection limit), excellent linearity (a calibration relative response factor relative standard deviation [RSD] of 9.8%) over a wide dynamic mass range (1-100 pptv), recovery/accuracy of 93%, a low selected ion monitoring method detection limit of 0.12 pptv (0.48 ng/m 3), replicate precision of 6.8% RSD, and stability (84% recovery) out to four days of storage at room temperature. Samples collected at two silicon wafer fabrication facilities ranged from 10.0 to 9120 pptv TMS and appear to be associated with the use of hexamethyldisilazane priming agent. This method will enable semiconductor cleanroom managers to monitor and control for trace levels of trimethylsilanol. © 2013 American Chemical Society.

Herrington J.S.,Restek Corporation | Myers C.,Juniata College
Journal of Chromatography A | Year: 2015

Electronic cigarettes (e-cigarettes) are growing in popularity exponentially. Despite their ever-growing acceptance, their aerosol has not been fully characterized. The current study focused on evaluating e-cigarette solutions and their resultant aerosol for potential differences. A simple sampling device was developed to draw e-cigarette aerosol into a multi-sorbent thermal desorption (TD) tube, which was then thermally extracted and analyzed via a gas chromatography (GC) mass spectrometry (GC-MS) method. This novel application provided detectable levels of over one hundred fifteen volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) from a single 40. mL puff. The aerosol profiles from four commercially available e-cigarettes were compared to their respective solution profiles with the same GC-MS method. Solution profiles produced upwards of sixty four unidentified and identified (some only tentatively) constituents and aerosol profiles produced upwards of eighty two compounds. Results demonstrated distinct analyte profiles between liquid and aerosol samples. Most notably, formaldehyde, acetaldehyde, acrolein, and siloxanes were found in the aerosol profiles; however, these compounds were never present in the solutions. These results implicate the aerosolization process in the formation of compounds not found in solutions; have potential implications for human health; and stress the need for an emphasis on electronic cigarette aerosol testing. © 2015 The Authors.

A device for transferring and containing liquid and a mixing method are provided. The device includes a vial having at least two storage lumens extending axially along a vial body, a transfer channel coupled to a distal end of each of the storage lumens, and a common chamber in fluid communication with the storage lumens via the transfer channels. The mixing method includes providing the device for transferring and containing liquid material; providing a fluid subunit in each of the storage lumens, a distal gasket sealing each of the fluid subunits from a distal end of the vial; providing a plunger assembly coupled to a proximal end of the vial; and depressing the plunger assembly. Depressing the plunger assembly forces the distal gaskets into the gasket seats and transfers the fluid subunits into the common chamber via the transfer channels.

Discover hidden collaborations