Time filter

Source Type

Kuruthukulangarakoola G.T.,Institute of Biochemical Plant Pathology | Zhang J.,Institute of Biochemical Plant Pathology | Albert A.,Research Unit Environmental Simulation | Winkler B.,Research Unit Environmental Simulation | And 10 more authors.
Plant, Cell and Environment | Year: 2016

Nitric oxide (NO) is an important signalling molecule that is involved in many different physiological processes in plants. Here, we report about a NO-fixing mechanism in Arabidopsis, which allows the fixation of atmospheric NO into nitrogen metabolism. We fumigated Arabidopsis plants cultivated in soil or as hydroponic cultures during the whole growing period with up to 3ppmv of NO gas. Transcriptomic, proteomic and metabolomic analyses were used to identify non-symbiotic haemoglobin proteins as key components of the NO-fixing process. Overexpressing non-symbiotic haemoglobin 1 or 2 genes resulted in fourfold higher nitrate levels in these plants compared with NO-treated wild-type. Correspondingly, rosettes size and weight, vegetative shoot thickness and seed yield were 25, 40, 30, and 50% higher, respectively, than in wild-type plants. Fumigation with 250ppbv 15NO confirmed the importance of non-symbiotic haemoglobin 1 and 2 for the NO-fixation pathway, and we calculated a daily uptake for non-symbiotic haemoglobin 2 overexpressing plants of 250mgN/kg dry weight. This mechanism is probably important under conditions with limited N supply via the soil. Moreover, the plant-based NO uptake lowers the concentration of insanitary atmospheric NOx, and in this context, NO-fixation can be beneficial to air quality. © 2016 John Wiley & Sons Ltd. Source

Cataldi T.R.I.,University of Bari | Bianco G.,University of Basilicata | Fonseca J.,Research Unit Analytical Biogeochemistry | Schmitt-Kopplin P.,Research Unit Analytical Biogeochemistry | Schmitt-Kopplin P.,TU Munich
Analytical and Bioanalytical Chemistry | Year: 2013

Gram-negative bacteria use N-acylhomoserine lactones (AHLs) as their command language to coordinate population behavior during invasion and colonization of higher organisms. Although many different bacterial bioreporters are available for AHLs monitoring, in which a phenotypic response, e.g. bioluminescence, violacin production, and β-galactosidase activity, is exploited, mass spectrometry (MS) is the most versatile detector for rapid analysis of AHLs in complex microbial samples, with or without prior separation steps. In this paper we critically review recent advances in the application of high-resolution MS to analysis of the quorum sensing (QS) signaling molecules used by Gram-negative bacteria, with much emphasis on AHLs. A critical review of the use of bioreporters in the study of AHLs is followed by a short methodological survey of the capabilities of high-resolution mass spectrometry (HRMS), including Fourier-transform ion cyclotron resonance (FTICR) MS and quadrupole time-of-flight (qTOF) MS. Use of infusion electrospray ultrahigh-resolution FTICR MS (12 Tesla) enables accurate mass measurements for determination of the elemental formulas of AHLs in Acidovorax sp. N35 and Burkholderia ubonensis AB030584. Results obtained by coupling liquid chromatography with a hybrid quadrupole linear ion trap-FTICR mass spectrometer (LC-LTQ-FTICRMS, 7-T) for characterization of acylated homoserine lactones in the human pathogen Pseudomonas aeruginosa are presented. UPLC-ESI-qTOF MS has also proved to be suitable for identification of 3O-C10HSL in Pseudomonas putida IsoF cell culture supernatant. Aspects of sample preparation and the avoidance of analytical pitfalls are also emphasized. [Figure not available: see fulltext.] © 2012 Springer-Verlag. Source

Lee T.,University of Alberta | Lee T.,Wollongong Hospital | Clavel T.,TU Munich | Smirnov K.,Research Unit Analytical Biogeochemistry | And 9 more authors.
Gut | Year: 2016

Objective Iron deficiency is a common complication in patients with IBD and oral iron therapy is suggested to exacerbate IBD symptoms. We performed an openlabelled clinical trial to compare the effects of per oral (PO) versus intravenous (IV) iron replacement therapy (IRT). Design The study population included patients with Crohn's disease (CD; N=31), UC (N=22) and control subjects with iron deficiency (non-inflamed, NI=19). After randomisation, participants received iron sulfate (PO) or iron sucrose (IV) over 3 months. Clinical parameters, faecal bacterial communities and metabolomes were assessed before and after intervention. Results Both PO and IV treatments ameliorated iron deficiency, but higher ferritin levels were observed with IV. Changes in disease activity were independent of iron treatment types. Faecal samples in IBD were characterised by marked interindividual differences, lower phylotype richness and proportions of Clostridiales. Metabolite analysis also showed separation of both UC and CD from control anaemic participants. Major shifts in bacterial diversity occurred in approximately half of all participants after IRT, but patients with CD were most susceptible. Despite individual-specific changes in phylotypes due to IRT, PO treatment was associated with decreased abundances of operational taxonomic units assigned to the species Faecalibacterium prausnitzii, Ruminococcus bromii, Dorea sp. and Collinsella aerofaciens. Clear IV-specific and PO-specific fingerprints were evident at the level of metabolomes, with changes affecting cholesterol-derived host substrates. Conclusions Shifts in gut bacterial diversity and composition associated with iron treatment are pronounced in IBD participants. Despite similar clinical outcome, oral administration differentially affects bacterial phylotypes and faecal metabolites compared with IV therapy. © 2016 BMJ Publishing Group Ltd & British Society of Gastroenterology. Source

Velikova V.,Bulgarian Academy of Science | Velikova V.,Institute of Biochemical Plant Pathology | Muller C.,Research Unit Analytical Biogeochemistry | Ghirardo A.,Institute of Biochemical Plant Pathology | And 5 more authors.
Plant Physiology | Year: 2015

Isoprene is a small lipophilic molecule with important functions in plant protection against abiotic stresses. Here, we studied the lipid composition of thylakoid membranes and chloroplast ultrastructure in isoprene-emitting (IE) and nonisoprene-emitting (NE) poplar (Populus X canescens). We demonstrated that the total amount of monogalactosyldiacylglycerols, digalactosyldiacylglycerols, phospholipids, and fatty acids is reduced in chloroplasts when isoprene biosynthesis is blocked. A significantly lower amount of unsaturated fatty acids, particularly linolenic acid in NE chloroplasts, was associated with the reduced fluidity of thylakoid membranes, which in turn negatively affects photosystem II photochemical efficiency. The low photosystem II photochemical efficiency in NE plants was negatively correlated with nonphotochemical quenching and the energy-dependent component of nonphotochemical quenching. Transmission electron microscopy revealed alterations in the chloroplast ultrastructure in NE compared with IE plants. NE chloroplasts were more rounded and contained fewer grana stacks and longer stroma thylakoids, more plastoglobules, and larger associative zones between chloroplasts and mitochondria. These results strongly support the idea that in IE species, the function of this molecule is closely associated with the structural organization and functioning of plastidic membranes. © 2015 American Society of Plant Biologists. All rights reserved. Source

Discover hidden collaborations