Lanham, MD, United States

Research Support Instruments, Inc.

www.researchsupport.com
Lanham, MD, United States
SEARCH FILTERS
Time filter
Source Type

Snyder A.R.,Post Professional Athletic Training Program | Perotti A.L.,Phoenix College | Lam K.C.,Research Support Instruments, Inc. | Bay R.C.,A.T. Still University
Journal of Sport Rehabilitation | Year: 2010

Context: Electrical stimulation is often used to control edema formation after acute injury. However, it is unknown whether its theoretical benefits translate to benefits in clinical practice. Objectives: To systematically review the basic-science literature regarding the effects of high-voltage pulsed stimulation (HVPS) for edema control. Evidence Acquisition: CINAHL (1982 to February 2010), PubMed (1966 to February 2010), Medline (1966 to February 2010), and SPORTDiscus (1980 to February 2010) databases were searched for relevant studies using the following keywordsedema, electrical stimulation, high-volt electrical stimulation, and combinations of these terms. Reference sections of relevant studies were hand-searched. Included studies investigated HVPS and its effect on acute edema formation and included outcome measures specific to edema. Eleven studies met the inclusion criteria. Methodological quality and level of evidence were assessed for each included study. Effect sizes were calculated for primary edema outcomes. Evidence Synthesis: Studies were critiqued by electrical stimulation treatment parameters: mode of stimulation, polarity, frequency, duration of treatment, voltage, intensity, number of treatments, and overall time of treatments. The available evidence indicates that HVPS administered using negative polarity, pulse frequency of 120 pulses/s, and intensity of 90% visual motor contraction may be effective at curbing edema formation. In addition, the evidence suggests that treatment should be administered in either four 30-min treatment sessions (30-min treatment, 30-min rest cycle for 4 h) or a single, continuous180-min session to achieve the edemasuppressing effects. Conclusions: These findings suggest that the basic-science literature provides a general list of treatment parameters that have been shown to successfully manage the formation of edema after acute injury in animal subjects. These treatment parameters may facilitate future research related to the effects of HVPS on edema formation in humans and guide practical clinical use. © 2010 Human Kinetics, Inc.


Manka C.K.,Research Support Instruments, Inc. | Nikitin S.,Research Support Instruments, Inc. | Lunsford R.,Research Support Instruments, Inc. | Kunapareddy P.,Research Support Instruments, Inc. | Grun J.,U.S. Navy
Journal of Raman Spectroscopy | Year: 2011

Raman and other spectroscopy systems operating in the deep ultraviolet (DUV) spectral region below 250 nm lack scattering standards. Such standards are particularly important for experiments that use multiwavelength excitation and/or when results are compared across different experiment platforms. Teflon has been used as an external standard in the visible and near-IR spectral regions and has been suggested for use in the ultraviolet (UV). Comparison of the relative amplitudes of prominent Teflon Raman lines indicates a significant effect on line ratios when the excitation wavelength is below 250 nm. This dependence on excitation wavelength has been commented on previously and attributed to pre-resonance effects, but no detailed examination had been undertaken to date. We present the results of a study of Teflon Raman line ratios obtained from closely spaced excitation wavelengths in the DUV from 210 to 320 nm. The 731 cm-1 line is identified as well suited for a standard. Electronic transition energies associated with resonance of principal Teflon Raman lines are obtained. We present the results of a study of Teflon Raman line ratios obtained from closely spaced excitation wavelengths in the deep ultraviolet from 210 to 320 nm. The 731 cm-1 line is identified as well suited for a standard. Electronic transition energies associated with resonance of principal Teflon Raman lines are obtained. Copyright © 2010 John Wiley & Sons, Ltd.


Manheimer W.,U.S. Navy | Manheimer W.,Research Support Instruments, Inc. | Colombant D.,U.S. Navy | Colombant D.,Berkeley Research Associates | Schmitt A.J.,U.S. Navy
Physics of Plasmas | Year: 2012

This paper extends the velocity dependent Krook (VDK) model, developed at NRL over the last 4 years, to two dimensions and presents a variety of calculations. One dimensional spherical calculations presented here investigate shock ignition. Comparing VDK calculations to a flux limit calculation shows that the laser profile has to be retuned and some gain is sacrificed due to preheat of the fuel. However, preheat is by no means a show stopper for laser fusion. The recent foil acceleration experiments at the University of Rochester Laboratory for Laser Energetics are modeled with two-dimensional simulations. The radial loss is very important to consider in modeling the foil acceleration. Once this is done, the VDK model gives the best agreement with the experiment. © 2012 American Institute of Physics.


Caron J.N.,Research Support Instruments, Inc. | Kunapareddy P.,Research Support Instruments, Inc.
AIP Conference Proceedings | Year: 2014

Gas-coupled Laser Acoustic Detection (GCLAD) has been used as a method to sense ultrasound waves in materials without contact of the material surface. To sense the waveform, a laser beam is directed parallel to the material surface and displaced or deflected when the radiated waveform traverses the beam. We present recent tests that demonstrate the potential of using this technique for detecting ultrasound in gelatin phantoms and in water. As opposed to interferometric detection, GCLAD operates independently of the optical surface properties of the material. This allows the technique to be used in cases where the material is transparent or semi-transparent. We present results on sensing ultrasound in gelatin phantoms that are used to mimic biological materials. As with air-coupled transducers, the frequency response of GCLAD at high frequencies is limited by the high attenuation of ultrasound in air. In contrast, water has a much lower attenuation. Here we demonstrate the use of a GCLAD-like system in water, measuring the directivity response at 1 MHz and sensing waveforms with higher frequency content. © 2014 AIP Publishing LLC.


Bremer J.C.,Research Support Instruments, Inc.
Proceedings of SPIE - The International Society for Optical Engineering | Year: 2010

The Advanced Baseline Imager (ABI) will image Earth in 16 spectral channels, including 10 thermal IR (TIR) channels. The instantaneous field of view (IFOV) of each TIR detector element is (56 μrad)2. The ABI has an onboard fullaperture blackbody, the Internal Calibration Target (ICT), used in conjunction with deep space looks to calibrate the ABI's TIR channels. The ICT is only observed over a small range of temperatures and at one specific pair of reflection angles from the ABI's two scan mirrors. The sunlit area on Mercury's surface underfills the IFOV's of the ABI's TIR channels, but has a much higher range of characteristic temperatures than the ICT, so its radiation is weighted more strongly toward shorter wavelengths. Comparison of a TIR channel's responses to the ICT and to Mercury provides a sensitive means to evaluate variations in spectral response functions among detector elements, across the ABI's field of regard, and among instruments on different satellites. Observations of Mercury can also verify co-registration among the ABI's atmospheric absorption channels that do not observe features on Earth's surface. The optimal conditions for viewing Mercury typically occur during one or two intervals of a few weeks each year when it traverses the ABI's FOR (-10.5° < declination < +10.5°) with an elongation angle from the Sun of at least 20.5°. © 2010 Copyright SPIE - The International Society for Optical Engineering.


Caron J.N.,Research Support Instruments, Inc. | DiComo G.P.,Research Support Instruments, Inc.
Applied Optics | Year: 2014

Acoustic waveforms create fluctuations in the index of refraction of the medium. An optical beam passing through the disturbance will be deflected or displaced from the original path. The acoustic wave can be detected by sending a laser through the disturbance and sensing the path changes of the beam with a position-sensitive photodetector. This paper presents a model of this interaction in water to predict the sensitivity and frequency response. The model demonstrates that the frequency response of the system is broadband, allowing detection from a few hundred hertz to 20 MHz. This technique has potential use for underwater acoustic sensing and ultrasonic inspection of materials. © 2014 Optical Society of America.


Caron J.N.,Research Support Instruments, Inc. | DiComo G.P.,Research Support Instruments, Inc. | Nikitin S.,Research Support Instruments, Inc.
Optics Letters | Year: 2012

Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America.


Caron J.N.,Research Support Instruments, Inc. | Kunapareddy P.,Research Support Instruments, Inc.
Journal of Physics: Conference Series | Year: 2014

Gas-coupled laser acoustic detection (GCLAD) was primarily developed to sense laser-generated ultrasound in composite materials. In a typical setup, a laser beam is directed parallel to the material surface. Radiated ultrasound waves deflect or displace the probe beam resulting from changes in the air's index of refraction. A position-sensitive photodetector senses the beam movement, and produces a signal proportional to the ultrasound wave. In this paper, we discuss three applications of GCLAD that take advantage of the unique detection characteristics. Directivity patterns of ultrasound amplitude in water demonstrate the use of GCLAD as a directional hydrophone. We also demonstrate the sensing of waveforms from a gelatin. The gelatin mimics ultrasound propagation through skin tissues. Lastly, we show how GCLAD can be used as a line receiver for continuous laser generation of ultrasound. CLGU may enable ultrasound scanning at rates that are orders of magnitude faster than current methods. © Published under licence by IOP Publishing Ltd.


Grant
Agency: Department of Defense | Branch: Air Force | Program: SBIR | Phase: Phase I | Award Amount: 99.93K | Year: 2010

Research Support Instruments, Inc. (RSI) proposes the Gyroscopic Inertial Micro-Balance Attitude Locator (GIMBAL), a MEMS gyro concept presented at the SENSIAC Joint Precision Azimuth Sensing Symposium, to address the problem of rate gyroscope drift, a particular issue for antenna pedestals. While macro-size gyroscopes, including fiber ring gyros, have achieved navigation-grade performance, Micro-Electro-Mechanical System (MEMS) gyros have been limited to rate-grade performance, particularly in long-term bias drift. GIMBAL is particularly suited to addressing this, since it does not rely on the vibratory structure common in MEMS gyros. Instead, it uses a true spinning wheel for the proof mass, which will not have any mechanical linkages between axes, causing a bias drift much smaller than encountered in current MEMS-sized gyros. The Phase I program will involve design, fabrication, and test of the key encapsulated micro-gyro technology; system design of the complete rate gyro sensor including identification of risks and study of concept feasibility/other technologies; and characterization of key technology performance. In Phase II, a complete gyro sensor will be designed and built, and detailed tests and demonstrations will resolve design issues for the final design. The result will be a rate gyro that will address a critical need in antenna pedestal platforms. BENEFIT: This project will prove the concept of embedding a gyro rotor in a micro-cavity as a new spinning-wheel-based rate gyro unit for an antenna pedestal platform. Accelerometers have long held the lead in commercialized MEMS sensors, and MEMS inertial sensors in general have similar market potential. Other than guidance for antenna pedestals, general navigation will be the first larger-scale market, where the high performance will be required and a higher initial unit cost will be acceptable. Once unit costs reduce due to large production quantities, the automotive markets will become a viable target; these involve the purchase of millions of IMU’s each year In addition to antenna pedestal applications, the GIMBAL gyros will be applicable to DOD applications ranging from personnel tracking to munitions guidance. The target U.S. government markets will be the US Air Force, Army, and Navy (for use in antenna tracking and navigation), as well as DOD components (SOCOM, for example) that need more specialized tracking capabilities.


Grant
Agency: National Aeronautics and Space Administration | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 99.97K | Year: 2010

Research Support Instruments, Inc. (RSI) proposes the Gyroscopic Inertial Micro-Balance Azimuth Locator (GIMBAL) program to use an innovative encapsulated spinning wheel micro-gyroscope as a Guidance, Navigation, and Control (GN&C) actuator for small spacecraft use. While macro-size gyroscopes, including fiber ring gyros, have achieved navigation-grade performance, Micro-Electro-Mechanical System (MEMS) gyros have been limited to rate-grade performance, particularly in long-term bias drift. This is often attributable to quadrature error, which is a result of cross-coupling between drive and sense axes (Yazdi 1998). GIMBAL is particularly suited to addressing this, since it does not rely on the vibratory structure common in MEMS gyros. Instead, it uses a true spinning wheel for the proof mass, which will not have any mechanical linkages between axes. This will result in a bias drift much smaller than encountered in current MEMS-sized gyros. The Phase I GIMBAL program will involve design, fabrication, and test of the key encapsulated micro-gyro technology as well as system design of the GN&C component. In Phase II, the complete gyro sensor will be designed and built, and detailed tests and demonstrations will resolve design issues for the final design. The result will be a GN&C component that will address a critical need in future NASA science missions.

Loading Research Support Instruments, Inc. collaborators
Loading Research Support Instruments, Inc. collaborators