Time filter

Source Type

Appleton K.M.,Medical University of South Carolina | Luttrell L.M.,Medical University of South Carolina | Luttrell L.M.,Research Service Of The Ralph hnson Veterans Affairs Medical Center
Journal of Receptors and Signal Transduction | Year: 2013

Our growing appreciation of the pluridimensionality of G protein-coupled receptor (GPCR) signaling, combined with the phenomenon of orthosteric ligand "bias", has created the possibility of drugs that selectively modulate different aspects of GPCR function for therapeutic benefit. When viewed from the short-term perspective, e.g. changes in receptor conformation, effector coupling or second messenger generation, biased ligands appear to activate a subset of the response profile produced by a conventional agonist. Yet when examined in vivo, the limited data available suggest that biased ligand effects can diverge from their conventional counterparts in ways that cannot be predicted from their in vitro efficacy profile. What is currently missing, at least with respect to G protein and arrestin pathway-selective ligands, is a rational framework for relating the in vitro efficacy of a "biased" agonist to its in vivo actions that will enable drug screening programs to identify ligands with the desired biological effects. © 2013 Informa Healthcare USA, Inc. All rights reserved.


Williams G.R.,Medical University of South Carolina | Bethard J.R.,Medical University of South Carolina | Berkaw M.N.,Medical University of South Carolina | Nagel A.K.,Medical University of South Carolina | And 3 more authors.
Methods | Year: 2016

The type 1 parathyroid hormone receptor (PTH1R) is a key regulator of calcium homeostasis and bone turnover. Here, we employed SILAC-based quantitative mass spectrometry and bioinformatic pathways analysis to examine global changes in protein phosphorylation following short-term stimulation of endogenously expressed PTH1R in osteoblastic cells in vitro. Following 5min exposure to the conventional agonist, PTH(1-34), we detected significant changes in the phosphorylation of 224 distinct proteins. Kinase substrate motif enrichment demonstrated that consensus motifs for PKA and CAMK2 were the most heavily upregulated within the phosphoproteome, while consensus motifs for mitogen-activated protein kinases were strongly downregulated. Signaling pathways analysis identified ERK1/2 and AKT as important nodal kinases in the downstream network and revealed strong regulation of small GTPases involved in cytoskeletal rearrangement, cell motility, and focal adhesion complex signaling. Our data illustrate the utility of quantitative mass spectrometry in measuring dynamic changes in protein phosphorylation following GPCR activation. © 2015 Elsevier Inc.


Abdallah R.T.,Medical University of South Carolina | Keum J.-S.,Medical University of South Carolina | Lee M.-H.,Medical University of South Carolina | Wang B.,Medical University of South Carolina | And 5 more authors.
Journal of Biological Chemistry | Year: 2010

The kallikrein-kinin system, along with the interlocking renin-angiotensin system, is a key regulator of vascular contractility and injury response. The principal effectors of the kallikrein-kinin system are plasma and tissue kallikreins, proteases that cleave high molecular weight kininogen to produce bradykinin. Most of the cellular actions of kallikrein (KK) are thought to be mediated by bradykinin, which acts via G protein-coupled B1 and B2 bradykinin receptors on VSMCs and endothelial cells. Here, we find that primary aortic vascular smooth muscle but not endothelial cells possess the ability to activate plasma prekallikrein. Surprisingly, exposing VSMCs to prekallikrein leads to activation of the ERK1/2 mitogen-activated protein kinase cascade via a mechanism that requires kallikrein activity but does not involve bradykinin receptors. In transfected HEK293 cells, we find that plasma kallikrein directly activates G protein-coupled protease-activated receptors (PARs) 1 and 2, which possess consensus kallikrein cleavage sites, but not PAR4. In vascular smooth muscles, KK stimulates ADAM (a disintegrin and metalloprotease) 17 activity via a PAR1/2 receptor-dependent mechanism, leading sequentially to release of the endogenous ADAM17 substrates, amphiregulin and tumor necrosis factor-α, metalloprotease-dependent transactivation of epidermal growth factor receptors, and metalloprotease and epidermal growth factor receptor-dependent ERK1/2 activation. These results suggest a novel mechanism of bradykinin-independent kallikrein action that may contribute to the regulation of vascular responses in pathophysiologic states, such as diabetes mellitus.


Strungs E.G.,Medical University of South Carolina | Luttrell L.M.,Medical University of South Carolina | Luttrell L.M.,Research Service Of The Ralph hnson Veterans Affairs Medical Center
Handbook of Experimental Pharmacology | Year: 2014

The four members of the mammalian arrestin family, two visual and two nonvisual, share the property of stimulus-dependent docking to G protein-coupled receptors. This conformational selectivity permits them to function in receptor desensitization, as arrestin binding sterically inhibits G protein coupling. The two nonvisual arrestins further act as adapter proteins, linking receptors to the clathrin-dependent endocytic machinery and regulating receptor sequestration, intracellular trafficking, recycling, and degradation. Arrestins also function as ligand-regulated scaffolds, recruiting catalytically active proteins into receptor-based multiprotein "signalsome" complexes. Arrestin binding thus marks the transition from a transient G protein-coupled state on the plasma membrane to a persistent arrestin-coupled state that continues to signal as the receptor internalizes. Two of the earliest discovered and most studied arrestin-dependent signaling pathways involve regulation of Src family nonreceptor tyrosine kinases and the ERK1/2 mitogen-activated kinase cascade. In each case, arrestin scaffolding imposes constraints on kinase activity that dictate signal duration and substrate specificity. Evidence suggests that arrestin-bound ERK1/2 and Src not only play regulatory roles in receptor desensitization and trafficking but also mediate longer term effects on cell growth, migration, proliferation, and survival. © 2014 Springer-Verlag Berlin Heidelberg.


Wilson P.C.,Medical University of South Carolina | Lee M.-H.,Medical University of South Carolina | Appleton K.M.,Medical University of South Carolina | El-Shewy H.M.,Medical University of South Carolina | And 6 more authors.
Journal of Biological Chemistry | Year: 2013

The renin-angiotensin and kallikrein-kinin systems are key regulators of vascular tone and inflammation. Angiotensin II, the principal effector of the renin-angiotensin system, promotes vasoconstriction by activating angiotensin AT1 receptors. The opposing effects of the kallikrein-kinin system are mediated by bradykinin acting on B1 and B2 bradykinin receptors. The renin-angiotensin and kallikrein-kinin systems engage in cross-talk at multiple levels, including the formation of AT1-B2 receptor heterodimers. In primary vascular smooth muscle cells, we find that the arrestin pathway-selective AT1 agonist, [Sar 1,Ile4,Ile8]-AngII, but not the neutral AT1 antagonist, losartan, inhibits endogenous B2 receptor signaling. In a transfected HEK293 cell model that recapitulates this effect, we find that the actions of [Sar1,Ile4, Ile8]-AngII require the AT1 receptor and result from arrestin-dependent co-internalization of AT1-B2 heterodimers. BRET50 measurements indicate that AT1 and B2 receptors efficiently heterodimerize. In cells expressing both receptors, pretreatment with [Sar 1,Ile4,Ile8]-AngII blunts B2 receptor activation of Gq/11-dependent intracellular calcium influx and Gi/o-dependent inhibition of adenylyl cyclase. In contrast, [Sar1,Ile 4,Ile8]-AngII has no effect on B2 receptor ligand affinity or bradykinin-induced arrestin3 recruitment. Both radioligand binding assays and quantitative microscopy-based analysis demonstrate that [Sar 1,Ile4,Ile8]-AngII promotes internalization of AT1-B2 heterodimers. Thus, [Sar1,Ile4,Ile 8]-AngII exerts lateral allosteric modulation of B2 receptor signaling by binding to the orthosteric ligand binding site of the AT1 receptor and promoting co-sequestration of AT1-B2 heterodimers. Given the opposing roles of the renin-angiotensin and kallikrein-kinin systems in vivo, the distinct properties of arrestin pathway-selective and neutral AT1 receptor ligands may translate into different pharmacologic actions.


Morinelli T.A.,Medical University of South Carolina | Luttrell L.M.,Medical University of South Carolina | Luttrell L.M.,Research Service Of The Ralph hnson Veterans Affairs Medical Center | Strungs E.G.,Medical University of South Carolina | And 2 more authors.
International Journal of Biochemistry and Cell Biology | Year: 2016

The vasoactive hormone angiotensin II initiates its major hemodynamic effects through interaction with AT1 receptors, a member of the class of G protein-coupled receptors. Acting through its AT1R, angiotensin II regulates blood pressure and renal salt and water balance. Recent evidence points to additional pathological influences of activation of AT1R, in particular inflammation, fibrosis and atherosclerosis. The transcription factor nuclear factor κB, a key mediator in inflammation and atherosclerosis, can be activated by angiotensin II through a mechanism that may involve arrestin-dependent AT1 receptor internalization.Peritoneal dialysis is a therapeutic modality for treating patients with end-stage kidney disease. The effectiveness of peritoneal dialysis at removing waste from the circulation is compromised over time as a consequence of peritoneal dialysis-induced peritoneal fibrosis. The non-physiological dialysis solution used in peritoneal dialysis, i.e. highly concentrated, hyperosmotic glucose, acidic pH as well as large volumes infused into the peritoneal cavity, contributes to the development of fibrosis. Numerous trials have been conducted altering certain components of the peritoneal dialysis fluid in hopes of preventing or delaying the fibrotic response with limited success.We hypothesize that structural activation of AT1R by hyperosmotic peritoneal dialysis fluid activates the internalization process and subsequent signaling through the transcription factor nuclear factor κB, resulting in the generation of pro-fibrotic/pro-inflammatory mediators producing peritoneal fibrosis. © 2016 Elsevier Ltd.


Luttrell L.M.,Medical University of South Carolina | Luttrell L.M.,Research Service Of The Ralph hnson Veterans Affairs Medical Center
Progress in Molecular Biology and Translational Science | Year: 2013

Our growing appreciation of the pluridimensionality of G protein-coupled receptor (GPCR) efficacy, coupled with the phenomenon of orthosteric ligand "bias," offers the prospect of drugs that selectively modulate different aspects of GPCR function for therapeutic benefit. As the best-studied non-G protein effectors, arrestins have been shown to mediate a wide range of GPCR signals, and arrestin pathway-selective ligands have been identified for several receptors. When viewed from the perspective of short term in vitro assays, such "biased" agonists appear to activate a subset of the response profile produced by a conventional agonist. Yet, when examined in vivo, the limited data available suggest that biased ligand effects can diverge from their conventional counterparts in ways that cannot be predicted from their in vitro efficacy profile. While some widely conserved arrestin-regulated biological processes are becoming apparent, what is lacking at present is a rational framework for relating the in vitro efficacy of a "biased" agonist to its in vivo actions that will aid drug discovery programs in identifying "biased" ligands with the desired biological effects. © 2013 Elsevier Inc.


Luttrell L.M.,Medical University of South Carolina | Luttrell L.M.,Research Service Of The Ralph hnson Veterans Affairs Medical Center | Miller W.E.,University of Cincinnati
Progress in Molecular Biology and Translational Science | Year: 2013

The discovery that, in addition to mediating G protein-coupled receptor (GPCR) desensitization and endocytosis, arrestins bind to diverse catalytically active nonreceptor proteins and act as ligand-regulated signaling scaffolds led to a paradigm shift in the study of GPCR signal transduction. Research over the past decade has solidified the concept that arrestins confer novel GPCR-signaling capacity by recruiting protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into receptor-based multiprotein "signalsome" complexes. Signalsomes regulate downstream pathways controlled by Src family nonreceptor tyrosine kinases, mitogen-activated protein kinases, protein kinase B (AKT), glycogen synthase kinase 3, protein phosphatase 2A, nuclear factor-κB, and several others, imposing spatial and temporal control on their function. While many arrestin-bound kinases and phosphatases are involved in the control of cytoskeletal rearrangement, vesicle endocytosis, exocytosis, and cell migration, other signals reach into the nucleus, affecting cell proliferation, apoptosis, and survival. Indeed, the kinase/phosphatase network regulated by arrestins may be fully as diverse as that regulated by heterotrimeric G proteins. © 2013 Elsevier Inc.


El-Shewy H.M.,Medical University of South Carolina | Sohn M.,Medical University of South Carolina | Wilson P.,Medical University of South Carolina | Lee M.H.,Medical University of South Carolina | And 4 more authors.
Molecular Endocrinology | Year: 2012

The pro-fibrotic connective tissue growth factor (CTGF) has been linked to the development and progression of diabetic vascular and renal disease.Werecently reported that low-density lipoproteins (LDL) induced expression of CTGF in aortic endothelial cells. However, the molecular mechanisms are not fully defined. Here, we have studied the mechanism by which LDL regulates CTGF expression in renal mesangial cells. In these cells, treatment with pertussis toxin abolished LDL-stimulated activation of ERK1/2 and c-Jun N-terminal kinase (JNK), indicating the involvement of heterotrimeric G proteins in LDL signaling. Treatment with LDL promoted activation and translocation of endogenous sphingosine kinase 1 (SK1) from the cytosol to the plasma membrane concomitant with production of sphingosine-1-phosphate (S1P). Pretreating cells with SK inhibitor, dimethylsphinogsine or downregulation of SK1 and SK2 revealed that LDL-dependent activation of ERK1/2 and JNK is mediated by SK1. Using a green fluorescent protein-tagged S1P1 receptor as a biological sensor for the generation of physiologically relevant S1P levels, we found that LDL induced S1P receptor activation. Pretreating cells with S1P1/S1P3 receptor antagonist VPC23019 significantly inhibited activation of ERK1/2 and JNK by LDL, suggesting that LDL elicits G protein-dependent activation of ERK1/2 and JNK by stimulating SK1-dependent transactivation of S1P receptors. Furthermore, S1P stimulation induced expression of CTGF in a dose-dependent manner that was markedly inhibited by blocking the ERK1/2 and JNK signaling pathways. LDL-induced CTGF expression was pertussis toxin sensitive and inhibited by dimethylsphinogsine down-regulation of SK1 and VPC23019 treatment. Our data suggest that SK1- dependent S1P receptor transactivation is upstream of ERK1/2 and JNK and that all three steps are required for LDL-regulated expression of CTGF in mesangial cells. © 2012 by The Endocrine Society.

Loading Research Service Of The Ralph hnson Veterans Affairs Medical Center collaborators
Loading Research Service Of The Ralph hnson Veterans Affairs Medical Center collaborators