Research Institute for Biological science Okayama

Okayama-shi, Japan

Research Institute for Biological science Okayama

Okayama-shi, Japan
SEARCH FILTERS
Time filter
Source Type

Gan P.,RIKEN | Narusaka M.,Research Institute for Biological science Okayama | Kumakura N.,RIKEN | Tsushima A.,University of Tokyo | And 3 more authors.
Genome biology and evolution | Year: 2016

Members from Colletotrichum genus adopt a diverse range of lifestyles during infection of plants and represent a group of agriculturally devastating pathogens. In this study, we present the draft genome of Colletotrichum incanum from the spaethianum clade of Colletotrichum and the comparative analyses with five other Colletotrichum species from distinct lineages. We show that the C. incanum strain, originally isolated from Japanese daikon radish, is able to infect both eudicot plants, such as certain ecotypes of the eudicot Arabidopsis, and monocot plants, such as lily. Being closely related to Colletotrichum species both in the graminicola clade, whose members are restricted strictly to monocot hosts, and to the destructivum clade, whose members are mostly associated with dicot infections, C. incanum provides an interesting model system for comparative genomics to study how fungal pathogens adapt to monocot and dicot hosts. Genus-wide comparative genome analyses reveal that Colletotrichum species have tailored profiles of their carbohydrate-degrading enzymes according to their infection lifestyles. In addition, we show evidence that positive selection acting on secreted and nuclear localized proteins that are highly conserved may be important in adaptation to specific hosts or ecological niches. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


PubMed | Nara University, Meiji University, Keio University, Nagoya University and 4 more.
Type: Journal Article | Journal: The EMBO journal | Year: 2016

Perception of microbe-associated molecular patterns by host cell surface pattern recognition receptors (PRRs) triggers the intracellular activation of mitogen-activated protein kinase (MAPK) cascades. However, it is not known how PRRs transmit immune signals to MAPK cascades in plants. Here, we identify a complete phospho-signaling transduction pathway from PRR-mediated pathogen recognition to MAPK activation in plants. We found that the receptor-like cytoplasmic kinase PBL27 connects the chitin receptor complex CERK1-LYK5 and a MAPK cascade. PBL27 interacts with both CERK1 and the MAPK kinase kinase MAPKKK5 at the plasma membrane. Knockout mutants of MAPKKK5 compromise chitin-induced MAPK activation and disease resistance to Alternaria brassicicola PBL27 phosphorylates MAPKKK5 invitro, which is enhanced by phosphorylation of PBL27 by CERK1. The chitin perception induces disassociation between PBL27 and MAPKKK5 invivo Furthermore, genetic evidence suggests that phosphorylation of MAPKKK5 by PBL27 is essential for chitin-induced MAPK activation in plants. These data indicate that PBL27 is the MAPKKK kinase that provides the missing link between the cell surface chitin receptor and the intracellular MAPK cascade in plants.


Narusaka M.,Research Institute for Biological science Okayama | Kubo Y.,Kyoto Prefectural University | Hatakeyama K.,Japan National Agriculture and Food Research Organization | Imamura J.,Tamagawa University | And 6 more authors.
PLoS ONE | Year: 2013

A major class of disease resistance (R) genes which encode nucleotide binding and leucine rich repeat (NB-LRR) proteins have been used in traditional breeding programs for crop protection. However, it has been difficult to functionally transfer NB-LRR-type R genes in taxonomically distinct families. Here we demonstrate that a pair of Arabidopsis (Brassicaceae) NB-LRR-type R genes, RPS4 and RRS1, properly function in two other Brassicaceae, Brassica rapa and Brassica napus, but also in two Solanaceae, Nicotiana benthamiana and tomato (Solanum lycopersicum). The solanaceous plants transformed with RPS4/RRS1 confer bacterial effector-specific immunity responses. Furthermore, RPS4 and RRS1, which confer resistance to a fungal pathogen Colletotrichum higginsianum in Brassicaceae, also protect against Colletotrichum orbiculare in cucumber (Cucurbitaceae). Importantly, RPS4/RRS1 transgenic plants show no autoimmune phenotypes, indicating that the NB-LRR proteins are tightly regulated. The successful transfer of two R genes at the family level implies that the downstream components of R genes are highly conserved. The functional interfamily transfer of R genes can be a powerful strategy for providing resistance to a broad range of pathogens. © 2013 Narusaka et al.


Narusaka M.,Research Institute for Biological science Okayama | Hatakeyama K.,Japan National Agriculture and Food Research Organization | Shirasu K.,RIKEN | Narusaka Y.,Research Institute for Biological science Okayama
Plant Signaling and Behavior | Year: 2014

Bacterial wilt phytopathogen Ralstonia solanacearum is a serious soil-borne disease that attacks several economically important plants worldwide, including Brassicaceae. Previous studies indicate that recognition of avirulence (Avr)-effector PopP2 by resistance (R) protein, RR S1-R, and physical interaction between RR S1-R and PopP2 in the nucleus are required for resistance. Of late, we showed that a pair of Arabidopsis thaliana TIR -NLR proteins, RR S1 and RPS4, function together in disease resistance against multiple pathogen isolates. Here, we report that dual R proteins, RR S1 and RPS4, from A. thaliana ecotype Wassilewskija confer resistance to bacterial wilt in transgenic Brassica crops. For practical applications, this finding may provide a new strategy for developing disease resistant plants that express R genes from other plants. © 2014 Landes Bioscience.


PubMed | Sun Yat Sen University and Research Institute for Biological science Okayama
Type: Journal Article | Journal: PloS one | Year: 2015

Plant activators are chemicals that induce plant defense responses to a broad spectrum of pathogens. Here, we identified a new potential plant activator, 5-(cyclopropylmethyl)-6-methyl-2-(2-pyridyl)pyrimidin-4-ol, named PPA (pyrimidin-type plant activator). Compared with benzothiadiazole S-methyl ester (BTH), a functional analog of salicylic acid (SA), PPA was fully soluble in water and increased fresh weight of rice (Oryza sativa) and Arabidopsis plants at low concentrations. In addition, PPA also promoted lateral root development. Microarray data and real-time PCR revealed that PPA-treated leaves not challenged with pathogen showed up-regulation of genes related to reactive oxygen species (ROS), defenses and SA. During bacterial infection, Arabidopsis plants pretreated with PPA showed dramatically decreased disease symptoms and an earlier and stronger ROS burst, compared with plants pretreated with BTH. Microscopy revealed that H2O2 accumulated in the cytosol, plasma membrane and cell wall around intracellular bacteria, and also on the bacterial cell wall, indicating that H2O2 was directly involved in killing bacteria. The increase in ROS-related gene expression also supported this observation. Our results indicate that PPA enhances plant defenses against pathogen invasion through the plant redox system, and as a water-soluble compound that can promote plant growth, has broad potential applications in agriculture.


Narusaka Y.,Research Institute for Biological science Okayama | Narusaka Y.,Okayama University | Shinya T.,Meiji University | Shinya T.,Okayama University | And 5 more authors.
Plant Signaling and Behavior | Year: 2013

Plants have the ability to detect invading fungi through the perception of chitin fragments released from the fungal cell walls. Plant chitin receptor consists of two types of plasma membrane proteins, CEBiP and CERK1. However, the contribution of these proteins to chitin signaling is different between Arabidopsis and rice. In Arabidopsis, it seems CERK1 receptor kinase is enough for both ligand perception and signaling, whereas both CEBiP and OsCERK1 are required for chitin signaling in rice. Here we report that Arabidopsis CEBiP homolog, LYM2, is not involved in chitin signaling but contributes to resistance against a fungal pathogen, Alternaria brassicicola, indicating the presence of a novel disease resistance mechanism in Arabidopsis. © 2013 Landes Bioscience.


Kitajima S.,Kyoto Institute of Technology | Taira T.,University of Ryukyus | Oda K.,Research Institute for Biological science Okayama | Yamato K.T.,Kinki University | And 2 more authors.
Planta | Year: 2012

A laticifer is a cell involved in plant defense against biotic stresses such as herbivores and microorganisms; however, its gene expression is poorly understood. We compared protein accumulation and transcriptomes among laticifers of lignified and unlignified organs of mulberry (Morus alba), which has a non-articulated, branched type of laticifer. LA-a (equivalent to MLX56) and its homolog LA-b (insecticidal chitinase-like proteins containing two chitin-binding domains) were major proteins in laticifers of unlignified organs, and another protein (LA-c) was a major protein in laticifers of lignified organs. Purification, cDNA cloning, and bioassay of LA-c revealed that LA-c was an acidic class I chitinase having antifungal but not insecticidal activity. Comparative mRNA-Seq analysis using a GS-FLX revealed transcripts of other possible defense-related proteins. Jacalin-like lectin, galacturonase-inhibitor, and pathogenesis-related proteins were also abundant; however, the relative amounts differed among laticifers of lignified and unlignified organs. The results suggest a discontinuous laticifer network in planta and adaptation to different potential enemies among these organs. © 2011 Springer-Verlag.


Hirayama T.,Okayama University | Matsuura T.,Okayama University | Ushiyama S.,Yokohama City University | Narusaka M.,Research Institute for Biological science Okayama | And 8 more authors.
Nature Communications | Year: 2013

Coordination of gene expression in the organelles and the nucleus is important for eukaryotic cell function. Transcriptional and post-transcriptional gene regulation in mitochondria remains incompletely understood in most eukaryotes, including plants. Here we show that poly(A)-specific ribonuclease, which influences the poly(A) status of cytoplasmic mRNA in many eukaryotes, directly regulates the poly(A) tract of mitochondrial mRNA in conjunction with a bacterial-type poly(A) polymerase, AGS1, in Arabidopsis. An Arabidopsis poly(A)-specific ribonuclease-deficient mutant, ahg2-1, accumulates polyadenylated mitochondrial mRNA and shows defects in mitochondrial protein complex levels. Mutations of AGS1 suppress the ahg2-1 phenotype. Mitochondrial localizations of AHG2 and AGS1 are required for their functions in the regulation of the poly(A) tract of mitochondrial mRNA. Our findings suggest that AHG2 and AGS1 constitute a regulatory system that controls mitochondrial mRNA poly(A) status in Arabidopsis. © 2009-2012 IEEE.


PubMed | Kyoto University, Research Institute for Biological science Okayama, RIKEN and University of Tokyo
Type: Journal Article | Journal: Genome biology and evolution | Year: 2016

Members from Colletotrichum genus adopt a diverse range of lifestyles during infection of plants and represent a group of agriculturally devastating pathogens. In this study, we present the draft genome of Colletotrichum incanum from the spaethianum clade of Colletotrichum and the comparative analyses with five other Colletotrichum species from distinct lineages. We show that the C. incanum strain, originally isolated from Japanese daikon radish, is able to infect both eudicot plants, such as certain ecotypes of the eudicot Arabidopsis, and monocot plants, such as lily. Being closely related to Colletotrichum species both in the graminicola clade, whose members are restricted strictly to monocot hosts, and to the destructivum clade, whose members are mostly associated with dicot infections, C. incanum provides an interesting model system for comparative genomics to study how fungal pathogens adapt to monocot and dicot hosts. Genus-wide comparative genome analyses reveal that Colletotrichum species have tailored profiles of their carbohydrate-degrading enzymes according to their infection lifestyles. In addition, we show evidence that positive selection acting on secreted and nuclear localized proteins that are highly conserved may be important in adaptation to specific hosts or ecological niches.


PubMed | Kyoto University, RIKEN, Research Institute for Biological science Okayama and Okayama University
Type: | Journal: Scientific reports | Year: 2016

Arabidopsis thaliana leucine-rich repeat-containing (NLR) proteins RPS4 and RRS1, known as dual resistance proteins, confer resistance to multiple pathogen isolates, such as the bacterial pathogens Pseudomonas syringae and Ralstonia solanacearum and the fungal pathogen Colletotrichum higginsianum. RPS4 is a typical Toll/interleukin 1 Receptor (TIR)-type NLR, whereas RRS1 is an atypical TIR-NLR that contains a leucine zipper (LZ) motif and a C-terminal WRKY domain. RPS4 and RRS1 are localised near each other in a head-to-head orientation. In this study, direct mutagenesis of the C-terminal LZ motif in RRS1 caused an autoimmune response and stunting in the mutant. Co-immunoprecipitation analysis indicated that full-length RPS4 and RRS1 are physically associated with one another. Furthermore, virus-induced gene silencing experiments showed that hypersensitive-like cell death triggered by RPS4/LZ motif-mutated RRS1 depends on EDS1. In conclusion, we suggest that the RRS1-LZ motif is crucial for the regulation of the RPS4/RRS1 complex.

Loading Research Institute for Biological science Okayama collaborators
Loading Research Institute for Biological science Okayama collaborators