Entity

Time filter

Source Type


Shiota H.,Okayama University | Kanzaki H.,Okayama University | Hatanaka T.,Research Institute for Biological science | Nitoda T.,Okayama University
Carbohydrate Research | Year: 2013

TMG-chitotriomycin (1) produced by the actinomycete Streptomyces annulatus NBRC13369 was examined as a probe for the prediction of substrate specificity of β-N-acetylhexosaminidases (HexNAcases). According to the results of inhibition assays, 14 GH20 HexNAcases from various organisms were divided into 1-sensitive and 1-insensitive enzymes. Three representatives of each group were investigated for their substrate specificity. The 1-sensitive HexNAcases hydrolyzed N-acetylchitooligosaccharides but not N-glycan-type oligosaccharides, whereas the 1-insensitive enzymes hydrolyzed N-glycan-type oligosaccharides but not N-acetylchitooligosaccharides, indicating that TMG-chitotriomycin can be used as a molecular probe to distinguish between chitin-degrading HexNAcases and glycoconjugate-processing HexNAcases. © 2013 Elsevier Ltd. All rights reserved. Source


Kawai F.,Kyoto Institute of Technology | Kitajima S.,Kyoto Institute of Technology | Oda K.,Research Institute for Biological science | Higasa T.,Kyoto Institute of Technology | And 3 more authors.
Archives of Microbiology | Year: 2013

Scanning electron microscopy (SEM) shows remarkable morphological surface changes in Sphingopyxis sp. 113P3 cells grown in polyvinyl alcohol (PVA) but not in Luria-Bertani medium (LB) (Hu et al. in Arch Microbiol 188: 235-241, 2007). However, transmission electron microscopy showed no surface changes in PVA-grown cells and revealed the presence of polymer bodies in the periplasm of PVA-grown cells, which were not observed in LB-grown cells. The presence of polymer bodies was supported by low-vacuum SEM observation of PVA- and LB-grown cells of strain 113P3, and the presence of similar polymer bodies was also found when Sphingopyxis macrogoltabida 103 and S. terrae were grown in polyethylene glycol (PEG). The extraction of PVA and PEG from the periplasmic fraction of cells using a modified Anraku and Heppel method and their analysis by MALDI-TOF mass spectrometry strongly suggested that the polymer bodies are composed of PVA and PEG, respectively, in Sphingopyxis sp. 113P3 (PVA degrader) and Sphingopyxis macrogoltabida 103 or S. terrae (PEG degraders). PEG-grown S. macrogoltabida 103 and S. terrae showed higher transport of 14C-PEG 4000 than LB-grown cells. Recombinant PegB (TonB-dependent receptor-like protein consisting of a barrel structure) interacted with PEG 200, 4000 and 20000, suggesting that the barrel protein in the outer membrane contributes to the transport of PEG into the periplasm. © 2012 Springer-Verlag Berlin Heidelberg. Source


Mworia E.G.,Okayama University | Yoshikawa T.,Okayama University | Yokotani N.,Research Institute for Biological science | Fukuda T.,Kagawa Agricultural Experiment Stn. 6117 1 Fuchu Cho | And 4 more authors.
Postharvest Biology and Technology | Year: 2010

Ethylene biosynthesis in kiwifruit, Actinidia chinensis 'Sanuki Gold' was characterized using propylene, an ethylene analog, and 1-methylcyclopropene (1-MCP), an inhibitor of ethylene perception. In fruit harvested between a young stage (66 days after pollination) (DAP) and an early commercial harvesting stage (143 DAP), 2 days of exposure to propylene were sufficient to initiate ethylene biosynthesis while in fruit harvested at commercial harvesting stage (154 DAP), 4 days of propylene treatment were required. This observation suggests that response of ethylene biosynthesis to propylene treatment in kiwifruit declined with fruit maturity. Propylene treatment resulted in up-regulated expression of AC-ACO1, AC-ACO2, AC-SAM1 and AC-SAM2, prior to the induction of AC-ACS1 and ethylene production, confirming that AC-ACS1 is the rate limiting step in ethylene biosynthesis in kiwifruit. Treatment of fruit with more than 5 μL L-1 of 1-MCP after the induction of ethylene production subsequently suppressed ethylene production and expression of ethylene biosynthesis genes. Treatment of fruit with 1-MCP at harvest followed with propylene treatment delayed the induction of ethylene production and AC-ACS1 expression for 5 days. These observations suggest that in ripening kiwifruit, ethylene biosynthesis is regulated by positive feedback mechanism and that 1-MCP treatment at harvest effectively delays ethylene production by 5 days. © 2009 Elsevier B.V. All rights reserved. Source


Hanano S.,Research Institute for Biological science | Goto K.,Research Institute for Biological science
Plant Cell | Year: 2011

TERMINAL FLOWER1 (TFL1) is a key regulator of flowering time and the development of the inflorescence meristem in Arabidopsis thaliana. TFL1 and FLOWERING LOCUS T (FT) have highly conserved amino acid sequences but opposite functions. For example, FT promotes flowering and TFL1 represses it; FT-overexpressing plants and TFL1 loss-of-function mutants have a similar phenotype production of terminal flowers in the shoot apex. FT is believed to function in a transcriptional activator complex by interacting with FD. Here, we demonstrate that TFL1 is involved in the transcriptional repression of genes that are activated by FT. We analyzed transgenic plants overexpressing TFL1 fused to a transcriptional repressor domain (TFL1-SRDX) or an activator domain (TFL1-VP16). Plants carrying 35S:TFL1-SRDX showed delayed flowering similar to 35S:TFL1 plants, and plants carrying 35S:TFL1-VP16 showed an early flowering phenotype and produced terminal flowers. Furthermore, the tfl1 and 35S:TFL1-VP16 plant phenotypes were strongly suppressed by the fd mutation, and TFL1 interacted with FD in the cell nucleus, as shown by bimolecular fluorescence complementation experiments. We conclude that TFL1 negatively modulates the FD-dependent transcription of target genes to fine-tune flowering time and the development of the inflorescence meristem. © 2011 American Society of Plant Biologists. All rights reserved. Source


Nahar K.,Okayama University | Matsumoto I.,Okayama University | Taguchi F.,Okayama University | Inagaki Y.,Okayama University | And 6 more authors.
Molecular Plant Pathology | Year: 2014

Summary: Ralstonia solanacearum is a Gram-negative soil-borne bacterium that causes bacterial wilt disease in more than 200 plant species, including economically important Solanaceae species. In R.solanacearum, the hypersensitive response and pathogenicity (Hrp) type III secretion system is required for both the ability to induce the hypersensitive response (HR) in nonhost plants and pathogenicity in host plants. Recently, 72 effector genes, called rip (Ralstonia protein injected into plant cells), have been identified in R.solanacearumRS1000. RS1002, a spontaneous nalixidic acid-resistant derivative of RS1000, induced strong HR in the nonhost wild eggplant Solanum torvum in an Hrp-dependent manner. An Agrobacterium-mediated transient expression system revealed that Rip36, a putative Zn-dependent protease effector of R.solanacearum, induced HR in S.torvum. A mutation in the putative Zn-binding motif (E149A) completely abolished the ability to induce HR. In agreement with this result, the RS1002-derived Δrip36 and rip36E149A mutants lost the ability to induce HR in S.torvum. An E149A mutation had no effect on the translocation of Rip36 into plant cells. These results indicate that Rip36 is an avirulent factor that induces HR in S.torvum and that a putative Zn-dependent protease motif is essential for this activity. © 2013 BSPP AND JOHN WILEY & SONS LTD. Source

Discover hidden collaborations