Research Institute Fondazione Santa Lucia

Santa Lucia di Serino, Italy

Research Institute Fondazione Santa Lucia

Santa Lucia di Serino, Italy
Time filter
Source Type

Panni S.,University of Rome Tor Vergata | Panni S.,University of Calabria | Montecchi-Palazzi L.,University of Rome Tor Vergata | Kiemer L.,University of Rome Tor Vergata | And 9 more authors.
Proteomics | Year: 2011

Large-scale interaction studies contribute the largest fraction of protein interactions information in databases. However, co-purification of non-specific or indirect ligands, often results in data sets that are affected by a considerable number of false positives. For the fraction of interactions mediated by short linear peptides, we present here a combined experimental and computational strategy for ranking the reliability of the inferred partners. We apply this strategy to the family of 14-3-3 domains. We have first characterized the recognition specificity of this domain family, largely confirming the results of previous analyses, while revealing new features of the preferred sequence context of 14-3-3 phospho-peptide partners. Notably, a proline next to the carboxy side of the phospho-amino acid functions as a potent inhibitor of 14-3-3 binding. The position-specific information about residue preference was encoded in a scoring matrix and two regular expressions. The integration of these three features in a single predictive model outperforms publicly available prediction tools. Next we have combined, by a naïve Bayesian approach, these "peptide features" with "protein features", such as protein co-expression and co-localization. Our approach provides an orthogonal reliability assessment and maps with high confidence the 14-3-3 peptide target on the partner proteins. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Perfetto L.,University of Rome Tor Vergata | Gherardini P.F.,University of Rome Tor Vergata | Davey N.E.,European Molecular Biology Laboratory | Diella F.,European Molecular Biology Laboratory | And 4 more authors.
Trends in Biochemical Sciences | Year: 2013

The SPla/Ryanodine receptor (SPRY)/B30.2 domain is one of the most common folds in higher eukaryotes. The human genome encodes 103 SPRY/B30.2 domains, several of which are involved in the immune response. Approximately 45% of human SPRY/B30.2-containing proteins are E3 ligases. The role and function of the majority of SPRY/B30.2 domains are still poorly understood, however, in several cases mutations in this domain have been linked to congenital disorders. The recent characterization of SPRY/B30.2-mediated protein interactions has provided evidence for a role of this domain as an adaptor module to assemble macromolecular complexes, analogous to Src homology (SH)2, SH3, and WW domains. However, functional and structural evidence suggests that SPRY/B30.2 is a more versatile fold, allowing a wide range of binding modes. © 2012 Elsevier Ltd.

Pallucca R.,University of Rome Tor Vergata | Visconti S.,University of Rome Tor Vergata | Camoni L.,University of Rome Tor Vergata | Cesareni G.,University of Rome Tor Vergata | And 5 more authors.
PLoS ONE | Year: 2014

14-3-3 proteins are a family of ubiquitous dimeric proteins that modulate many cellular functions in all eukaryotes by interacting with target proteins. 14-3-3s exist as a number of isoforms that in Arabidopsis identifies two major groups named ε and non-ε. Although isoform specificity has been demonstrated in many systems, the molecular basis for the selection of specific sequence contexts has not been fully clarified. In this study we have investigated isoform specificity by measuring the ability of different Arabidopsis 14-3-3 isoforms to activate the H+-ATPase. We observed that GF14 isoforms of the non-εgroup were more effective than ε group isoforms in the interaction with the H+-ATPase and in the stimulation of its activity. Kinetic and thermodynamic parameters of the binding of GF14ε and GF14ω isoforms, representative of ε and non-ε groups respectively, with the H+-ATPase, have been determined by Surface Plasmon Resonance analysis demonstrating that the higher affinity of GF14ω is mainly due to slower dissociation. The role of the C-terminal region and of a Gly residue located in the loop 8 and conserved in all non-ε isoforms has also been studied by deletion and site-specific mutagenesis. The C-erminal domains, despite their high divergence, play an auto-inhibitory role in both isoforms and they, in addition to a specific residue located in the loop 8, contribute to isoform specificity. To investigate the generality of these findings, we have used the SPOT-synthesis technology to array a number of phosphopeptides matching known or predicted 14-3-3 binding sites present in a number of clients. The results of this approach confirmed isoform specificity in the recognition of several target peptides, suggesting that the isoform specificity may have an impact on the modulation of a variety of additional protein activities, as suggested by probing of a phosphopeptide array with members of the two 14-3-3 groups. © 2014 Pallucca et al.

Sacco F.,University of Rome Tor Vergata | Perfetto L.,University of Rome Tor Vergata | Castagnoli L.,University of Rome Tor Vergata | Cesareni G.,University of Rome Tor Vergata | Cesareni G.,Research Institute Fondazione Santa Lucia
FEBS Letters | Year: 2012

The concerted activities of kinases and phosphatases modulate the phosphorylation levels of proteins, lipids and carbohydrates in eukaryotic cells. Despite considerable effort, we are still missing a holistic picture representing, at a proteome level, the functional relationships between kinases, phosphatases and their substrates. Here we focus on phosphatases and we review and integrate the available information that helps to place the members of the protein phosphatase superfamilies into the human protein interaction network. In addition we show how protein interaction domains and motifs, either covalently linked to the phosphatase domain or in regulatory/adaptor subunits, play a prominent role in substrate selection. © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Liberti S.,University of Rome Tor Vergata | Sacco F.,University of Rome Tor Vergata | Calderone A.,University of Rome Tor Vergata | Perfetto L.,University of Rome Tor Vergata | And 9 more authors.
FEBS Journal | Year: 2013

Phosphatases and kinases contribute to the regulation of protein phosphorylation homeostasis in the cell. Phosphorylation is a key post-translational modification underlying the regulation of many cellular processes. Thus, a comprehensive picture of phosphatase function and the identification of their target substrates would aid a systematic approach to a mechanistic description of cell signalling. Here we present a website designed to facilitate the retrieval of information about human protein phosphatases. To this end we developed a search engine to recover and integrate information annotated in several publicly available web resources. In addition we present a text-mining-assisted annotation effort aimed at extracting phosphatase related data reported in the scientific literature. The HuPho (human phosphatases) website can be accessed at © 2012 The Authors Journal compilation © 2012 FEBS.

Loading Research Institute Fondazione Santa Lucia collaborators
Loading Research Institute Fondazione Santa Lucia collaborators