Entity

Time filter

Source Type


de la Rosa J.J.G.,Research Group Plan Andaluz Investigacion Desarrollo Tecnologico e Innovacion | de la Rosa J.J.G.,University of Cadiz | Sierra-Fernandez J.M.,Research Group Plan Andaluz Investigacion Desarrollo Tecnologico e Innovacion | Sierra-Fernandez J.M.,University of Cadiz | And 6 more authors.
Energies | Year: 2015

For the development of the future smart grid, the detection of power quality events is a key issue for the power system monitoring. Voltage sags, swells, harmonics (variations) and interruptions, which produce large losses for commercial and industrial consumers, are the main events to be considered due to the sensitivity of equipment to these electrical anomalies. The steady-state events are even more frequently accompanied by transients, the discrimination and localization being far more exigent and requiring advanced signal separating tools to be incorporated in the measurement equipment. This paper shows the event detection performance of the spectral kurtosis as a signal separating tool in the frequency domain. The disturbances under test are hybrid signals resulting from the coupling between amplitude defects and non-desired higher frequencies. Being a fourth-order spectrum, the kurtosis is confirmed as a noise-resistant tool that enhances impulsiveness, therefore characterizing the electrical anomalies. In the beginning of the analysis, the voltage sag is established as a reference; then, the disturbances (oscillatory transients and harmonics) are coupled at the starting and ending instants of the sag, resulting in complex hybrid events. The results show that the spectral kurtosis enhances the detection of both types of events (steady state and transients), which are outlined in a bump shape in the fourth-order frequency pattern and centered in the main carrier frequency. Indeed, while the oscillatory transients are associated with softer and lower-amplitude peaks, the harmonics correspond to crisper and higher ones. As these mixed electrical faults are very common in the actual power grid, the article postulates the higher-order spectra to be implemented in prospective online measurement instruments. © 2015 by the authors. Source

Discover hidden collaborations