Research Group on Neuropharmacology of Aging


Research Group on Neuropharmacology of Aging

Time filter
Source Type

Mahar I.,University Institute of Mental Health | Mahar I.,McGill University | Albuquerque M.S.,University Institute of Mental Health | Albuquerque M.S.,University of Sao Paulo | And 17 more authors.
Frontiers in Aging Neuroscience | Year: 2017

Interneurons, key regulators of hippocampal neuronal network excitability and synchronization, are lost in advanced stages of Alzheimer's disease (AD). Given that network changes occur at early (presymptomatic) stages, we explored whether alterations of interneurons also occur before amyloid-beta (Aß) accumulation. Numbers of neuropeptide Y (NPY) and parvalbumin (PV) immunoreactive (IR) cells were decreased in the hippocampus of 1 month-old TgCRND8 mouse AD model in a sub-regionally specific manner. The most prominent change observed was a decrease in the number of PV-IR cells that selectively affected CA1/2 and subiculum, with the pyramidal layer (PY) of CA1/2 accounting almost entirely for the reduction in number of hippocampal PV-IR cells. As PV neurons were decreased selectively in CA1/2 and subiculum, and given that they are critically involved in the control of hippocampal theta oscillations, we then assessed intrinsic theta oscillations in these regions after a 4-aminopyridine (4AP) challenge. This revealed increased theta power and population bursts in TgCRND8 mice compared to non-transgenic (nTg) controls, suggesting a hyperexcitability network state. Taken together, our results identify for the first time AD-related alterations in hippocampal interneuron function as early as at 1 month of age. These early functional alterations occurring before amyloid deposition may contribute to cognitive dysfunction in AD. © 2017 Mahar, Albuquerque, Mondragon-Rodriguez, Cavanagh, Davoli, Chabot, Williams, Mechawar, Quirion and Krantic.

Caetano A.L.,Research Group on Neuropharmacology of Aging | Dong-Creste K.E.,Research Group on Neuropharmacology of Aging | Pesquero J.B.,Federal University of São Paulo | Araujo M.S.,Federal University of São Paulo | And 3 more authors.
Neuropeptides | Year: 2015

Alzheimer's disease (AD) is characterized by cognitive decline, presence of amyloid-beta peptide (Aβ) aggregates and neurofibrillary tangles. Kinins act through B1 and B2 G-protein coupled receptors (B1R and B2R). Chronic infusion of Aβ peptide leads to memory impairment and increases in densities of both kinin receptors in memory processing areas. Similar memory impairment was observed in C57BL/6 mice (WTAβ) but occurred earlier in mice lacking B2R (KOB2Aβ) and was absent in mice lacking B1R (KOB1Aβ). Thus, the aim of this study was to evaluate the participation of B1R and B2R in Aβ peptide induced cognitive deficits through the evaluation of densities of kinin receptors, synapses, cell bodies and number of Aβ deposits in brain ofWTAβ, KOB1Aβ and KOB2Aβ mice. An increase in B2R density was observed in both WTAβ and KOB1Aβ in memory processing related areas. KOB1Aβ showed a decrease in neuronal density and an increase in synaptic density and, in addition, an increase in Aβ deposits in KOB2Aβ was observed. In conclusion, memory preservation in KOB1Aβ, could be due to the increase in densities of B2R, suggesting a neuroprotective role for B2R, reinforced by the increased number of Aβ plaques in KOB2Aβ. Our data point to B2R as a potential therapeutic target in AD. © 2015 Elsevier Ltd.

Baraldi T.,University of Sao Paulo | Baraldi T.,Research Group on Neuropharmacology of Aging | Schowe N.M.,University of Sao Paulo | Schowe N.M.,Research Group on Neuropharmacology of Aging | And 8 more authors.
Experimental Gerontology | Year: 2013

In the central nervous system, the degree of decline in memory retrieval along the aging process depends on the quantity and quality of the stimuli received during lifetime. The cholinergic system modulates long-term potentiation and, therefore, memory processing. This study evaluated the spatial memory, the synaptic plasticity and the density of cholinergic markers in the hippocampi of mice submitted to cognitive stimulation during lifetime or during their aged phase. Male C57Bl/6 mice (2months old) were exposed to enriched environment during 15months (EE-15). An age-matched group was left in standard cages during the same period (SC-15). Spatial memory was evaluated using the Barnes maze at 2, 5, 11 and 17months of age. At the 17-month-old time point, EE-15 mice showed better performance in the spatial memory task (P<0.05), when compared to C-15 mice. Other two groups of mice were left in regular cages until the age of 15months, and then one of the groups was transferred to an enriched environment for two months (EE-2). The other group was kept in regular cages (C-2). After two months of stimulation, EE-2 showed a significant increase in spatial memory (P<0.01). At the end, brains were extracted and kept at -80°C. Slices were obtained from one hemisphere in a cryostat (20μm, -18°C) and thaw-mounted on gelatin coated slides. Synaptic densities, cellular bodies, BDNF densities and α4β2 nicotinic cholinergic receptors (nAChR) were evaluated by immunohistochemistry. Autoradiography for α7 nAChR was conducted using [125I]-α-bungarotoxin. The other half of the brains was used for Western blotting analysis of choline acetyltransferase (ChAT) density. There was no difference in synaptophysin or MAP-2 densities, but BDNF was increased in some hippocampal areas of EE-15 and EE-2, in comparison to control groups. In the same way, increases in ChAT and α7 densities, but not in α4β2, were observed. Both cognitive stimuli during lifetime or during the aged phase improved spatial memory of mice. No difference in structural plasticity was observed, but the maintenance of memory can be due to improvement in long-term potentiation functionality in the hippocampus, modulated, at least, by BDNF and the cholinergic system. © 2013 Elsevier Inc.

Dong-Creste K.E.,Research Group on Neuropharmacology of Aging | Baraldi-Tornisielo T.,Research Group on Neuropharmacology of Aging | Caetano A.L.,Research Group on Neuropharmacology of Aging | Gobeil F.,Université de Sherbrooke | And 3 more authors.
Biological Chemistry | Year: 2016

The bradykinin (BK) receptors B1R and B2R are involved in inflammatory responses and their activation can enhance tissue damage. The B2R is constitutively expressed and mediates the physiologic effects of BK, whereas B1R expression is induced after tissue damage. Recently, they have been involved with Alzheimer's disease, ischemic stroke and traumatic brain injury (TBI). In this study, we investigated the role of bradykinin in short and long-term memory consolidation (STM and LTM). It was observed that bilateral injection of BK (300 pmol/μl) disrupted the STM consolidation but not LTM, both evaluated by inhibitory avoidance test. The STM disruption due to BK injection was blocked by the previous injection of the B1R antagonist des-Arg10-HOE140 but not by the B2R antagonist HOE140. Additionally, the injection of the B1 agonist desArg9-BK disrupted STM and LTM consolidation at doses close to physiological concentration of the peptide (2.3 and 37.5 pmol, respectively) which could be reached during tissue injury. The presence of B1R located on glial cells around the implanted guide cannula used for peptide injection was confirmed by immunofluorescence. These data imply in a possible participation of B1R in the STM impairment observed in TBI, neuroinflammation and neurodegeneration. © 2016 by De Gruyter.

Silva Albequerque M.,University Institute of Mental Health | Silva Albequerque M.,University of Sao Paulo | Silva Albequerque M.,Research Group on Neuropharmacology of Aging | Mahar I.,University Institute of Mental Health | And 11 more authors.
Frontiers in Aging Neuroscience | Year: 2015

Hippocampal network activity is predominantly coordinated by γ-amino-butyric acid (GABA)ergic neurons. We have previously hypothesized that the altered excitability of ippocampal neurons in Alzheimer's disease (AD), which manifests as increased in vivo susceptibility to seizures in the TgCRND8 mouse model of AD, may be related to disruption of hippocampal GABAergic neurons. In agreement, our previous study in TgCRND8 mice has shown that hippocampal GABAergic neurons are more vulnerable to AD-related neuropathology than other types of neurons. To further explore the mechanisms behind the observed decrease of GABAergic neurons in 6 month-old TgCRND8 mice, we assessed the relative proportion of somatostatin (SOM), neuropeptide Y (NPY) and paravalbumin (PV) sub-types of GABAergic neurons at the regional and sub-regional level of the hippocampus. We found that NPY expressing GABAergic neurons were the most affected, as they weredecreased in CA1-CA2 (pyramidal-, stratum oriens, stratum radiatum and molecular layers), CA3 (specifically in the stratum oriens) and dentate gyrus (specifically in the polymorphic layer) in TgCRND8 mice as compared to non-transgenic controls. SOM expressing GABAergic neurons were decreased in CA1-CA2 (specifically in the stratum oriens) and in the stratum radiatum of CA3, whereas PV neurons were significantly altered in stratum orienssub-region of CA3. Taken together, these data provide new evidence for the relevance of hippocampal GABAergic neuronal network disruption as a mechanism underlying AD sequelae such as aberrant neuronal excitability, and further point to complex hippocampal regional and sub-regional variation in susceptibility to AD-related neuronal loss. © 2015 Albequerque, Mahar, Davoli, Chabot, Mechawar, Quirion and Krantic.

Loading Research Group on Neuropharmacology of Aging collaborators
Loading Research Group on Neuropharmacology of Aging collaborators