Time filter

Source Type

Milara J.,University of Valencia | Milara J.,Pharmacy Unit | Milara J.,Research Foundation of General Hospital of Valencia | Milara J.,General Universitario | And 11 more authors.
COPD: Journal of Chronic Obstructive Pulmonary Disease | Year: 2015

Cigarette smoking contributes to epithelial-mesenchymal transition (EMT) in COPD small bronchi as part of the lung remodeling process. We recently observed that roflumilast N-oxide (RNO), the active metabolite of the PDE4 inhibitor roflumilast, prevents cigarette smoke-induced EMT in differentiated human bronchial epithelial cells. Further, statins were shown to protect renal and alveolar epithelial cells from EMT. Objectives: To analyze how RNO and simvastatin (SIM) interact on CSE-induced EMT in well-differentiated human bronchial epithelial cells (WD-HBEC) from small bronchi in vitro. Methods: WD-HBEC were stimulated with CSE (2.5%). The mesenchymal markers vimentin, collagen type I and α-SMA, the epithelial markers E-cadherin and ZO-1, as well as β-catenin were quantified by real time quantitative PCR or Western blotting. Intracellular reactive oxygen species (ROS) were measured using the H2DCF-DA probe. GTP-Rac1 and pAkt were evaluated by Western blotting. Results: The combination of RNO at 2 nM and SIM at 100 nM was (over) additive to reverse CSE-induced EMT. CSE-induced EMT was partially mediated by the generation of ROS and the activation of the PI3K/Akt/β-catenin pathway. Both RNO at 2 nM and SIM at 100 nM partially abrogated this pathway, and its combination almost abolished ROS/PI3K/Akt/β-catenin signaling and therefore EMT. Conclusions: The PDE4 inhibitor roflumilast N-oxide acts (over)additively with simvastatin to prevent CSE-induced EMT in WD-HBEC in vitro. © 2015 Informa Healthcare USA, Inc. Source

Ortiz J.L.,University of Valencia | Milara J.,University of Valencia | Milara J.,Polytechnic University of Valencia | Milara J.,Research Foundation of General Hospital of Valencia | And 6 more authors.
Allergy: European Journal of Allergy and Clinical Immunology | Year: 2013

Background Several clinical studies have shown that smoking in asthmatics and chronic obstructive pulmonary disease patients is closely associated with corticosteroid refractoriness. In this work, we have analyzed glucocorticoid insensitivity in human pulmonary artery endothelial cells (HPAECs) under cigarette smoke extract (CSE) exposure as well as the possible additive effects of the combination therapy with a phosphodiesterase (PDE)-4 inhibitor. Methods Interleukin (IL)-8 was measured in cell supernatants by ELISA. Histone deacetylase (HDAC), histone acetylase (HAT), and intracellular cAMP levels were measured by colorimetric assays and enzyme immunoassay, respectively. PDE4 isotypes and glucocorticoid receptor (GR)-α and β expression were measured by real-time RT-PCR. Results The PDE4 inhibitor rolipram dose dependently inhibited the IL-8 secretion induced by CSE 5%. In contrast, dexamethasone 1 μM did not show inhibitory effect on IL-8 secretion. Combination of subeffective rolipram concentrations at 10 nM increased the inhibitory effect of dexamethasone to ~45% of inhibition. Cigarette smoke extract 5% inhibited HDAC activity and increased HAT activity generating glucocorticoid insensitivity. Rolipram did not modify the HDAC activity, however partially inhibited the increase in HAT activity at 1 μM. PDE4 isotypes were up-regulated by CSE 5% with the consequent cAMP down-regulation. Dexamethasone reduced all PDE4 isotypes expression and showed additive effects with rolipram enhancing cAMP levels. Furthermore, rolipram enhanced GR-α expression and inhibited the increase in GR-β induced by CSE. Conclusions Combination of rolipram and dexamethasone shows additive properties in HPAECs under glucocorticoid insensitive conditions. These results may be of potential value in future anti-inflammatory therapies using combination of PDE4 inhibitors and glucocorticoids. © 2012 John Wiley & Sons A/S. Source

Milara J.,University of Valencia | Milara J.,Health Institute Carlos III | Milara J.,Research Foundation of General Hospital of Valencia | Morcillo E.,Health Institute Carlos III | And 6 more authors.
PLoS ONE | Year: 2015

Fibrotic remodeling is a process common to chronic lung diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, acute respiratory distress syndrome and asthma. Based on preclinical studies phosphodiesterase 4 (PDE4) inhibitors may exhibit beneficial anti-inflammatory and anti-remodeling properties for the treatment of these respiratory disorders. Effects of PDE4 inhibitors on changes in the lung metabolome in models of pulmonary fibrotic remodeling have not yet been explored. This work studies the effects of the PDE4 inhibitor roflumilast on changes in the lung metabolome in the common murine model of bleomycin-induced lung fibrosis by nuclear magnetic resonance (NMR) metabolic profiling of intact lung tissue. Metabolic profiling reveals strong differences between fibrotic and non-fibrotic tissue. These differences include increases in proline, glycine, lactate, taurine, phosphocholine and total glutathione and decreases in global fatty acids. In parallel, there was a loss in plasma BH4. This profile suggests that bleomycin produces alterations in the oxidative equilibrium, a strong inflammatory response and activation of the collagen synthesis among others. Roflumilast prevented most of these metabolic effects associated to pulmonary fibrosis suggesting a favorable anti-fibrotic profile. Copyright: © 2015 Milara et al. Source

Milara J.,University of Valencia | Milara J.,Polytechnic University of Valencia | Milara J.,Research Foundation of General Hospital of Valencia | Peiro T.,Research Foundation of General Hospital of Valencia | And 9 more authors.
Pulmonary Pharmacology and Therapeutics | Year: 2014

Background: Epithelial to mesenchymal transition (EMT) is under discussion as a potential mechanism of small airway remodelling in COPD. In bronchial epithelium of COPD and smokers markers of EMT were described. Invitro, EMT may be reproduced by exposing well-differentiated human bronchial epithelial cells (WD-HBEC) to cigarette smoke extract (CSE). EMT may be mitigated by an increase in cellular cAMP. Objective: This study explored the effects of roflumilast N-oxide, a PDE4 inhibitor on CSE-induced EMT in WD-HBEC and in primary bronchial epithelial cells from smokers and COPD invitro. Methods: WD-HBEC from normal donors were stimulated with CSE (2.5%) for 72h in presence of roflumilast N-oxide (2nM or 1μM) or vehicle. mRNA and protein of EMT markers αSMA, vimentin, collagen-1, E-cadherin, ZO-1, KRT5 as well as NOX4 were quantified by real-time quantitative PCR or protein array, respectively. Phosphorylated and total ERK1/2 and Smad3 were assessed by protein array. cAMP and TGFβ1 were measured by ELISA. Reactive oxygen species (ROS) were determined by DCF fluorescence, after 30min CSE (2.5%). Apoptosis was measured with Annexin V/PI labelling. In some experiments, EMT markers were determined in monolayers of bronchial epithelial cells from smokers, COPD versus controls. Results: Roflumilast N-oxide protected from CSE-induced EMT in WD-HBEC. The PDE4 inhibitor reversed both the increase in mesenchymal and the loss in epithelial EMT markers. Roflumilast N-oxide restored the loss in cellular cAMP following CSE, reduced ROS, NOX4 expression, the increase in TGFβ1 release, phospho ERK1/2 and Smad3. The PDE4 inhibitor partly protected from the increment in apoptosis with CSE. Finally the PDE4 inhibitor decreased mesenchymal yet increased epithelial phenotype markers in HBEC of COPD and smokers. Conclusions: Roflumilast N-oxide may mitigate epithelial-mesenchymal transition in bronchial epithelial cells invitro. © 2014 Elsevier Ltd. Source

Milara J.,University of Valencia | Milara J.,Polytechnic University of Valencia | Milara J.,Research Foundation of General Hospital of Valencia | Lluch J.,Research Foundation of General Hospital of Valencia | And 8 more authors.
Journal of Allergy and Clinical Immunology | Year: 2014

Background Glucocorticoid functions are markedly impaired in patients with chronic obstructive pulmonary disease (COPD). The phosphodiesterase 4 inhibitor roflumilast N-oxide (RNO) is the active metabolite of roflumilast approved as a treatment to reduce the risk of exacerbations in patients with severe COPD. Objective We sought to characterize the differential effects of RNO versus corticosteroids and their potential additive/synergistic effect in neutrophils from patients with COPD, thus providing scientific rationale for the combination of roflumilast with corticosteroids in the clinic. Methods Peripheral blood neutrophils were isolated from patients with COPD (n = 32), smokers (n = 7), and healthy nonsmokers (n = 25). Levels of IL-8, matrix metallopeptidase 9 (MMP-9), and biomarkers of glucocorticoid resistance were determined by using ELISA and RT-PCR. Neutrophils were incubated with dexamethasone (0.1 nmol/L to 1 μmol/L), RNO (0.1 nmol/L to 1 μmol/L), or the combination of 1 nmol/L RNO plus 10 nmol/L DEX and stimulated with LPS (1 μg/mL) or cigarette smoke extract 5%; levels of IL-8, MMP-9, and other biomarkers were measured at the end of the incubation period. Results Peripheral neutrophils from patients with COPD showed a primed phenotype with an increased basal release of IL-8 and MMP-9 and expressed a corticosteroid resistance molecular profile characterized by an increase in phosphoinositide 3-kinase δ, macrophage migration inhibitory factor, and glucocorticoid receptor β expression and a decrease in HDAC activity and mitogen-activated protein kinase phosphatase 1 expression. RNO demonstrated robust anti-inflammatory effects on neutrophils from patients with COPD, reversing their resistance to corticosteroids. The combination of RNO and dexamethasone showed additive/synergistic effects, which were consistent with the reversal of corticosteroid-resistant molecular markers by RNO. Conclusion RNO reverses corticosteroid resistance and shows strong anti-inflammatory effects alone or in combination with corticosteroids on neutrophils from patients with COPD. © 2014 American Academy of Allergy, Asthma and Immunology. Source

Discover hidden collaborations