Time filter

Source Type

Tadeo I.,Medical Research Foundation INCLIVA | Piqueras M.,University of Valencia | Montaner D.,Principe Felipe Research Center | Villamon E.,University of Valencia | And 4 more authors.
Pediatric Research | Year: 2014

Background:Risk classification and treatment stratification for cancer patients is restricted by our incomplete picture of the complex and unknown interactions between the patient's organism and tumor tissues (transformed cells supported by tumor stroma). Moreover, all clinical factors and laboratory studies used to indicate treatment effectiveness and outcomes are by their nature a simplification of the biological system of cancer, and cannot yet incorporate all possible prognostic indicators.Methods:A multiparametric analysis on 184 tumor cylinders was performed. To highlight the benefit of integrating digitized medical imaging into this field, we present the results of computational studies carried out on quantitative measurements, taken from stromal and cancer cells and various extracellular matrix fibers interpenetrated by glycosaminoglycans, and eight current approaches to risk stratification systems in patients with primary and nonprimary neuroblastoma.Results:New tumor tissue indicators from both fields, the cellular and the extracellular elements, emerge as reliable prognostic markers for risk stratification and could be used as molecular targets of specific therapies.Conclusion:The key to dealing with personalized therapy lies in the mathematical modeling. The use of bioinformatics in patient-tumor-microenvironment data management allows a predictive model in neuroblastoma. © 2014 International Pediatric Research Foundation, Inc.

Bernal M.,University of Granada | Garcia-Alcalde F.,Principe Felipe Research Center | Garcia-Alcalde F.,University of Granada | Concha A.,University of Granada | And 4 more authors.
Cancer Immunology, Immunotherapy | Year: 2012

Aim: We compared the expression of genes related to inflammatory and cytotoxic functions between MSI and MSS (HLA-class I-negative and HLA-class I-positive) colorectal cancers (CRCs), seeking evidence of differences in inflammatory mediators and cytotoxic T-cell responses. Twenty-two CRCs were divided into three study groups as a function of HLA class I expression and MSI phenotype: 8 MSI tumours, 6 MSS/HLA- tumours and 6 MSS/HLA+ tumours (controls). Findings: A first comparison between eight MSI and six MSS/HLA-positive (control) cancers, based on microarray analysis on an Affymetrix® HG-U133-Plus-PM plate, identified 1974 differentially expressed genes (P < 0.05). We grouped genes in Gene Ontology functional categories: apoptotic programme (72 genes, P = 5.5×10 -3), leucocyte activation (43 genes, P = 1.8×10 -5), T-cell activation (24 genes, P = 6.3×10 -4), inflammatory response (40 genes, 2.3×10 -2) and cytokine production (10 genes, P = 1.9×10 -2). Real-time PCR and immunohistochemical evaluation were used to validate the data, finding that increased mRNA levels of pro-inflammatory cytokines and cytotoxic mediators were associated with greater infiltration by CD8+T lymphocytes in the MSI group (P < 0.001). Finally, HLA-class I-negative tumours were not grouped together but rather in accordance with features of the gene expression profile of MSI or MSS tumours. As expected, genes associated with antigen processing machinery and MHC class I molecules (TAP2, B2m) were downregulated in MSS/HLA-class I-negative CRCs (n = 6) in comparison to controls. Conclusions: In conclusion, microarray and immunohistochemical data may be useful to comprehensively assess tumour-host interactions and differentiate MSI from MSS cancers. The two types of tumour, MSI/HLA-class I-negative and MSS/HLA-class I-negative, showed marked differences in the composition and intensity of infiltrating leucocytes, suggesting that their immune escape strategies involve distinct pathways. © 2011 Springer-Verlag.

Castiella T.,University of Zaragoza | Munoz G.,University of Zaragoza | Luesma M.J.,University of Zaragoza | Santander S.,University of Zaragoza | And 2 more authors.
Journal of Cellular and Molecular Medicine | Year: 2013

Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal (non-epithelial) neoplasms of the human gastrointestinal (GI) tract. They are thought to derive from interstitial cells of Cajal (ICCs) or an ICC progenitor based on immunophenotypical and ultrastructural similarities. Because ICCs show primary cilium, our hypothesis is based on the possibility that some of these neoplastic cells could also present it. To determine this, an exhaustive ultrastructural study has been developed on four gastric GISTs. Previous studies had demonstrated considerable variability in tumour cells with two dominating phenotypes, spindly and epithelioid. In addition to these two types, we have found another cell type reminiscent of adult ICCs with a voluminous nucleus surrounded by narrow perinuclear cytoplasm with long slender cytoplasmic processes. We have also noted the presence of small undifferentiated cells. In this study, we report for the first time the presence of primary cilia (PCs) in spindle and epithelioid tumour cells, an ultrastructural feature we consider of special interest that has hitherto been ignored in the literature dealing with the ultrastructure of GISTs. We also point out the frequent occurrence of multivesicular bodies (MVBs). The ultrastructural findings described in gastric GISTs in this study appear to be relevant considering the critical roles played by PCs and MVBs recently demonstrated in tumourigenic processes. © 2013 The Authors.

Pascual M.,Principe Felipe Research Center | Balino P.,Jaume I University | Aragon C.M.G.,Jaume I University | Guerri C.,Principe Felipe Research Center
Neuropharmacology | Year: 2015

Recent evidence supports the influence of neuroimmune system activation on behavior. We have demonstrated that ethanol activates the innate immune system by stimulating toll-like receptor 4 (TLR4) signaling in glial cells, which triggers the release of inflammatory mediators and causes neuroinflammation. The present study aimed to evaluate whether the ethanol-induced up-regulation of cytokines and chemokines is associated with anxiety-related behavior, 24 h after ethanol removal, and if TLR4 or TLR2 is involved in these effects. We used WT, TLR4-KO and TLR2-KO mice treated with alcohol for 5 months to show that chronic ethanol consumption increases the levels of cytokines (IL-1β, IL-17, TNF-α) and chemokines (MCP-1, MIP-1α, CX3CL1) in the striatum and serum (MCP-1, MIP-1α, CX3CL1) of WT mice. Alcohol deprivation for 24 h induces IFN-γ levels in the striatum and maintains high levels of some cytokines (IL-1β, IL-17) and chemokines (MIP-1α, CX3CL1) in this brain region. The latter events were associated with an increase in anxiogenic-related behavior, as evaluated by the dark and light box and the elevated plus maze tests. Notably, mice lacking TLR4 or TLR2 receptors are largely protected against ethanol-induced cytokine and chemokine release, and behavioral associated effects during alcohol abstinence. These data support the role of TLR4 and TLR2 responses in neuroinflammation and in anxiogenic-related behavior effects during ethanol deprivation, and also provide evidence that chemokines and cytokines can be biomarkers of ethanol-induced neuroimmune response. © 2014 Elsevier Ltd. All rights reserved.

Lou Y.-R.,University of Helsinki | Kanninen L.,University of Helsinki | Kuisma T.,University of Helsinki | Niklander J.,University of Helsinki | And 4 more authors.
Stem Cells and Development | Year: 2014

Human embryonic stem cells and induced pluripotent stem cells have great potential in research and therapies. The current in vitro culture systems for human pluripotent stem cells (hPSCs) do not mimic the three-dimensional (3D) in vivo stem cell niche that transiently supports stem cell proliferation and is subject to changes which facilitate subsequent differentiation during development. Here, we demonstrate, for the first time, that a novel plant-derived nanofibrillar cellulose (NFC) hydrogel creates a flexible 3D environment for hPSC culture. The pluripotency of hPSCs cultured in the NFC hydrogel was maintained for 26 days as evidenced by the expression of OCT4, NANOG, and SSEA-4, in vitro embryoid body formation and in vivo teratoma formation. The use of a cellulose enzyme, cellulase, enables easy cell propagation in 3D culture as well as a shift between 3D and two-dimensional cultures. More importantly, the removal of the NFC hydrogel facilitates differentiation while retaining 3D cell organization. Thus, the NFC hydrogel represents a flexible, xeno-free 3D culture system that supports pluripotency and will be useful in hPSC-based drug research and regenerative medicine. © Copyright 2014, Mary Ann Liebert, Inc. 2014.

Discover hidden collaborations