Entity

Time filter

Source Type


Valle-Rodriguez J.O.,Ciatej Research Center istencia En Tecnologia seno Del Estado Of Jalisco | Hernandez-Cortes G.,Ciatej Research Center istencia En Tecnologia seno Del Estado Of Jalisco | Cordova J.,Ciatej Research Center istencia En Tecnologia seno Del Estado Of Jalisco | Cordova J.,University of Guadalajara | And 2 more authors.
Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology | Year: 2012

This study aimed to improve the fermentation efficiency of Kloeckera africana K1, in tequila fermentations. We investigated organic and inorganic nitrogen source requirements in continuous K. africana fermentations fed with Agave tequilana juice. The addition of a mixture of 20 amino-acids greatly improved the fermentation efficiency of this yeast, increasing the consumption of reducing sugars and production of ethanol, compared with fermentations supplemented with ammonium sulfate. The preference of K. africana for each of the 20 amino-acids was further determined in batch fermentations and we found that asparagine supplementation increased K. africana biomass production, reducing sugar consumption and ethanol production (by 30, 36.7 and 45%, respectively) over fermentations supplemented with ammonium sulfate. Therefore, asparagine appears to overcome K. africana nutritional limitation in Agave juice. Surprisingly, K. africana produced a high concentration of ethanol. This contrasts to poor ethanol productivities reported for other non-Saccharomyces yeasts indicating a relatively high ethanol tolerance for the K. africana K1 strain. Kloeckera spp. strains are known to synthesize a wide variety of volatile compounds and we have shown that amino-acid supplements influenced the synthesis by K. africana of important metabolites involved in the bouquet of tequila. The findings of this study have revealed important nutritional limitations of non-Saccharomyces yeasts fermenting Agave tequilana juice, and have highlighted the potential of K. africana in tequila production processes. © 2011 Springer Science+Business Media B.V. Source


Hernandez-Cortes G.,Ciatej Research Center istencia En Tecnologia seno Del Estado Of Jalisco | Cordova-Lopez J.A.,Ciatej Research Center istencia En Tecnologia seno Del Estado Of Jalisco | Cordova-Lopez J.A.,University of Guadalajara | Herrera-Lopez E.J.,Ciatej Research Center istencia En Tecnologia seno Del Estado Of Jalisco | And 3 more authors.
Journal of the Science of Food and Agriculture | Year: 2010

Background: Continuous cultures have been used since the 1950s in beer and wine fermentations due to their higher productivities compared to traditional batch systems; nevertheless, the tequila industry has not taken advantage of the possible improvements that continuous fermentations could offer. In this work, the effect of pH, aeration and feeding of nonsterilized medium, on the fermentative capability of two Saccharomyces cerevisiae strains (S1 and S2) cultured in continuous fermentation, using agave juice as the fermentation medium, were studied. Results: In continuous cultures, the control of the medium pH (set point at 4) did not have a significant effect on fermentation efficiency compared to fermentations in which the pH was not controlled (pH 2.5±0.3). Conversely, aeration of the cultures of both strains improved biomass production and consumption of reducing sugars and ammonium. The aeration also significantly augmented ethanol production only for S1 cultures (P < 0.05). Furthermore, the feeding of medium, either sterilized or not, did not show significant differences on the production of ethanol for S1 cultures. Higher concentrations of acetoin, succinic acid and diacetyl were found in the cultures fed with non-sterilized medium. Conclusions: Compared to S2, S1 has a better fermentative performance in continuous non-sterilized medium fermentations. Not controlling the pH during the cultures could prevent the possibility of microbial contamination as a result of the extreme medium acidity (pH 2.5±0.3). This work showed the possibility of scaling up agave juice continuous fermentation feeding non-sterilized medium with no control of pH. © 2010 Society of Chemical Industry. Source


Hernandez-Cortes G.,Ciatej Research Center istencia En Tecnologia seno Del Estado Of Jalisco | Valle-Rodriguez J.O.,Ciatej Research Center istencia En Tecnologia seno Del Estado Of Jalisco | Valle-Rodriguez J.O.,Chalmers University of Technology | Herrera-Lopez E.J.,Ciatej Research Center istencia En Tecnologia seno Del Estado Of Jalisco | And 4 more authors.
AMB Express | Year: 2016

Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L−1, reducing sugars consumption from 73 to 88 g L−1 and ethanol productivity from 3.0 to 3.2 g (Lh)−1, for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h−1, compared to 0.08 h−1 of non-supplemented cultures), ethanol production (47 g L−1), reducing sugars consumption (93 g L−1) and ethanol productivity [5.6 g (Lh)−1] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect of adding yeast extract and air to the continuous fermentations resulted in 88 % increase in ethanol productivity. For all cultures, pH was not controlled, reaching low pH values (from 2.6 to 3). This feature suggested a reduced probability of contamination for prolonged continuous cultures and explained why no significant differences were found between continuous cultures fed with sterilized or non-sterilized media. Concentrations of volatile compounds quantified in the distillates (tequila) were in the allowed ranges established by the Mexican regulation of tequila (NOM-006-SCFI-2012, Norma Oficial Mexicana: Bebidas alcohólicas-Tequila-specificaciones, 2012). The preference level of the distillates was similar to that of two well-known commercial tequilas. The results suggested the possibility of implementing this innovative technology on an industrial scale, attaining high productivities and using non-sterilized agave juice. © 2016, The Author(s). Source

Discover hidden collaborations