Entity

Time filter

Source Type


Wang X.,Northwest University, China | Wang X.,Research Center for Recyling Agriculture Engineering Technology of Shaanxi Province | Yang G.,Northwest University, China | Yang G.,Research Center for Recyling Agriculture Engineering Technology of Shaanxi Province | And 5 more authors.
Waste Management and Research | Year: 2013

Dairy manure (DM), chicken manure (CM) and wheat straw were used to investigate the possibility of optimizing the methane (CH4) potentials in anaerobic co-digestion of multiple substrates. Response surface methodology (RSM) was used to evaluate the individual and interactive effects of four variables [carbon/nitrogen (C/N) ratio, the feeding composition (DM/CM), initial substrate loading and inoculum-to-substrate ratio (ISR)] in the digestion process. All four variables had significant effects on CH4 potentials. Interactive effects of C/N and DM/CM ratios, C/N ratio and ISR, initial substrate loading and ISR were significant The optimum conditions were a C/N ratio of 26.31, a DM/CM ratio of 42.96:57.04, an initial loading of 15.90 g volatile solids (VS)/l and an ISR ratio of 2.34, with the maximum CH4 potential being 394 ml/g VS. The RSM model was appropriate for optimizing CH4 production in the process of anaerobic co-digestion of multiple substrates. © The Author(s) 2013. Source


Wang X.,Northwest University, China | Wang X.,Research Center for Recyling Agriculture Engineering Technology of Shaanxi Province | Yang G.,Northwest University, China | Yang G.,Research Center for Recyling Agriculture Engineering Technology of Shaanxi Province | And 6 more authors.
Bioresource Technology | Year: 2012

This study investigated the possibilities of improving methane yield from anaerobic digestion of multi-component substrates, using a mixture of dairy manure (DM), chicken manure (CM) and wheat straw (WS), based on optimized feeding composition and the C/N ratio. Co-digestion of DM, CM and WS performed better in methane potential than individual digestion. A larger synergetic effect in co-digestion of DM, CM and WS was found than in mixtures of single manures with WS. As the C/N ratio increased, methane potential initially increased and then declined. C/N ratios of 25:1 and 30:1 had better digestion performance with stable pH and low concentrations of total ammonium nitrogen and free NH3. Maximum methane potential was achieved with DM/CM of 40.3:59.7 and a C/N ratio of 27.2:1 after optimization using response surface methodology. The results suggested that better performance of anaerobic co-digestion can be fulfilled by optimizing feeding composition and the C/N ratio. © 2012 Elsevier Ltd. Source

Discover hidden collaborations