Entity

Time filter

Source Type


Kang Y.,South China Agricultural University | Kang Y.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province | Xiang B.,South China Agricultural University | Xiang B.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province | And 14 more authors.
Frontiers in Microbiology | Year: 2016

Although Newcastle disease virus (NDV) with high pathogenicity has frequently been isolated in poultry in China since 1948, the mode of its transmission among avian species remains largely unknown. Given that various wild bird species have been implicated as sources of transmission, in this study we genotypically and pathotypically characterized 23 NDV isolates collected from chickens, ducks, and pigeons in live bird markets (LBMs) in South China as part of an H7N9 surveillance program during December 2013-February 2014. To simulate the natural transmission of different kinds of animals in LBMs, we selected three representative NDVs-namely, GM, YF18, and GZ289-isolated from different birds to evaluate the pathogenicity and transmission of the indicated viruses in chickens, ducks, and pigeons. Furthermore, to investigate the replication and shedding of NDV in poultry, we inoculated the chickens, ducks, and pigeons with 106 EID50 of each virus via intraocular and intranasal routes. Eight hour after infection, the naïve contact groups were housed with those inoculated with each of the viruses as a means to monitor contact transmission. Our results indicated that genetically diverse viruses circulate in LBMs in South China's Guangdong Province and that NDV from different birds have different tissue tropisms and host ranges when transmitted in different birds. We therefore propose the continuous epidemiological surveillance of LBMs to support the prevention of the spread of these viruses in different birds, especially chickens, and highlight the need for studies of the virus-host relationship. © 2016 Kang, Xiang, Yuan, Zhao, Feng, Gao, Li, Li, Ning and Ren. Source


Kang Y.,South China Agricultural University | Kang Y.,Key Laboratory of Animal Vaccine Development | Kang Y.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province | Li Y.,South China Agricultural University | And 21 more authors.
Frontiers in Microbiology | Year: 2015

Though previous studies have identified two strains of duck-origin Newcastle disease virus (NDV) with varying levels of pathogenicity, the relationship between the early-phase host innate immune response, and pathogenesis of ducks infected with these strains in the lungs and thymuses remains unclear. In this study, we compared the viral distribution and mRNA expression of immune-related genes in ducks following infection with two NDV strains, Duck/CH/GD/SS/10 (SS-10) and Duck/CH/GD/NH/10 (NH-10). Both NDV strains replicated systemically in tested tissues (i.e., small intestine, cecal tonsils, brain, lung, bursa of Fabricius, thymus, and spleen) and exhibited different biological properties in duck pathogenicity. Real-time quantitative polymerase chain reaction showed that the expression of TLR3, TLR7, RIG-I, MDA5, IL-1β, IL-2, IL-6, IL-8, IFN-alpha, IFN-beta, IFN-gamma in the lungs was significantly greater than in the respective thymus genes during the early post infection stage. However, in the lungs, the expression of TLR3, TLR7, IL-1β, IL-2, IL-8, IFN-alpha, IFN-gamma, and MHC II induced by SS-10 at 72 h post-inoculation (hpi) was less than with NH-10. Furthermore, the expression of IL-6 and IFN-beta in the lungs and thymuses following infection with SS-10 was greater than that with NH-10 at 24 and 48 hpi. These results highlight important differences in host innate immune responses, courses of infection, and pathogenesis following NDV infection. Further studies should work to expand understandings of the molecular mechanisms related to NDV infection. © 2015 Kang, Li, Yuan, Feng, Xiang, Sun, Li, Xie, Tan and Ren. Source


LI B.S.,Research Center for Pathogens Detection Technology of Emerging Infectious Diseases | LI B.S.,Collaborating Center for Surveillance | XIAO Y.,Southern Medical University | WANG D.C.,Chinese National Institute for Communicable Disease Control and Prevention | And 11 more authors.
Epidemiology and Infection | Year: 2016

Vibrio cholerae O139 emerged as a causative agent of epidemic cholera in 1992 in India and Bangladesh, and was subsequently reported in China in 1993. The genetic relatedness and molecular characteristics of V. cholerae O139 in Guangdong Province, located in the southern coastal area of China, remains undetermined. In this study, we investigated 136 clinical V. cholerae O139 isolates from 1993 to 2013 in Guangdong. By conventional PCR, 123 (90·4%) isolates were positive for ctxB, ace and zot. Sequencing of the positive amplicons indicated 113 (91·7%) isolates possessed the El Tor allele of ctxB (genotype 3); seven carried the classical ctxB type (genotype 1) and three harboured a novel ctxB type (genotype 5). With respect to tcpA, 123 (90·4%) isolates were positive for the El Tor allele. In addition, pulsed-field gel electrophoresis (with NotI digestion) differentiated the isolates into clusters A and B. Cluster A contained seven of the non-toxigenic isolates from 1998 to 2000; another six non-toxigenic isolates (from 1998 and 2007) and all of the toxigenic isolates formed cluster B. Our results suggest that over a 20-year period, the predominant O139 clinical isolates have maintained a relatively tight clonal structure, although some genetic variance and shift has occurred. Our data highlight the persistence of toxigenic V. cholerae O139 in clinical settings in the southern coastal area of China. Copyright © Cambridge University Press 2016 Source


Li B.,Southern Medical University | Li B.,Research Center for Pathogens Detection Technology of Emerging Infectious Diseases | Li B.,Collaborating Center for Surveillance | Chen R.,Southern Medical University | And 13 more authors.
Infection, Genetics and Evolution | Year: 2016

China's Guangdong Province is located along the same latitude as Kolkata, India and Dhaka, Bangladesh, and is also considered a source of epidemic cholera. However, molecular description and the genetic relationships between Vibrio cholerae O1 El Tor isolates in Guangdong remain unclear. In this study, 381 clinical V. cholerae O1 isolates recovered from cholera cases presenting in Guangdong between 1961 and 2013 were investigated by PCR, amplicon sequencing and pulsed-field gel electrophoresis (PFGE). During this time frame, four distinct epidemic periods (1-4) were observed based on the different dominant serotype leading its epidemic, correspond to years; or time periods from/to 1961-1969, 1978-1989, 1990-2000, 2001-2013, respectively. Molecular analysis of representative isolates indicated that a single dominating clone was associated with each epidemic stage. All isolates from periods 1 and 2 carried the typical El Tor ctxB; this allele was displaced by classical ctxB beginning in 1993. However all isolates carried the El Tor-specific toxin-coregulated pili subunit A (tcpA). Isolates were grouped into five clusters on the basis of Not I enzyme digested PFGE, and the first four clusters were associated with specific periods, cluster I (period 1), II (period 3), III (period 2) and IV (period 4), respectively. While cluster V consisted of isolates from all four epidemic periods, but was most heterogeneous in appearance. Our data indicate genetic variations that shape the relationship among emerging isolates of V. cholerae O1 in Guangdong Province contribute to the 7th global pandemic. © 2015. Source


Yuan R.,Research Center for Pathogens Detection Technology of Emerging Infectious Diseases | Yuan R.,Collaborating Center for Surveillance | Yuan R.,South China Agricultural University | Wang Z.,Sun Yat Sen University | And 17 more authors.
Frontiers in Microbiology | Year: 2016

First identified in May 2014 in China's Sichuan Province, initial cases of H5N6 avian influenza virus (AIV) infection in humans raised great concerns about the virus's prevalence, origin, and development. To evaluate both AIV contamination in live poultry markets (LPMs) and the risk of AIV infection in humans, we have conducted surveillance of LPMs in Guangdong Province since 2013 as part of environmental sampling programs. With environmental samples associated with these LPMs, we performed genetic and phylogenetic analyses of 10 H5N6 AIVs isolated from different cities of Guangdong Province from different years. Results revealed that the H5N6 viruses were reassortants with hemagglutinin (HA) genes derived from clade 2.3.4.4 of H5-subtype AIV, yet neuraminidase (NA) genes derived from H6N6 AIV. Unlike the other seven H5N6 viruses isolated in first 7 months of 2014, all of which shared remarkable sequence similarity with the H5N1 AIV in all internal genes, the PB2 genes of GZ693, GZ670, and ZS558 more closely related to H6N6 AIV and the PB1 gene of GZ693 to the H3-subtype AIV. Phylogenetic analyses revealed that the environmental H5N6 AIV related closely to human H5N6 AIVs isolated in Guangdong. These results thus suggest that continued reassortment has enabled the emergence of a novel H5N6 virus in Guangdong, as well as highlight the potential risk of highly pathogenic H5N6 AIVs in the province. © 2016 Yuan, Wang, Kang, Wu, Zou, Liang, Song, Zhang, Ni, Lin and Ke. Source

Discover hidden collaborations