Suncheon Research Center for Natural Medicines

Suncheon, South Korea

Suncheon Research Center for Natural Medicines

Suncheon, South Korea
Time filter
Source Type

Hwang Y.-H.,Sunchon National University | Lee S.-J.,Sunchon National University | Kang K.-Y.,Sunchon National University | Hur J.-S.,Sunchon National University | And 2 more authors.
Journal of Microbiology and Biotechnology | Year: 2017

Lichen-forming fungi are known to have various biological activities, such as antioxidant, antimicrobial, antitumor, antiviral, anti-inflammation, and anti proliferative effects. However, the immunosuppressive effects of Bryoria sp. extract (BSE) have not previously been investigated. In this study, the inhibitory activity of BSE on the proliferation of CD8+ T cells and the mixed lymphocytes reaction (MLR) was evaluated in vitro. BSE was non-toxic in spleen cells and suppressed the growth of splenocytes induced by anti-CD3. The suppressed cell population in spleen cells consisted of CD8+ T cells and their proliferation was inhibited by the treatment with BSE. This extract significantly suppressed the IL-2 associated with T cell growth and IFN-γ as the CD8+ T cell marker. Furthermore, BSE reduced the expression of the IL-2 receptor alpha chain (IL-2Rα) on CD8+ T cells and CD86 on dendritic cells by acting as antigen-presenting cells. Finally, the MLR produced by the co-culture of C57BL/6 and MMCtreated BALB/c was suppressed by BSE. IL-2, IFN-γ, and CD69 on CD8+ T cells in MLR condition were inhibited by BSE. These results indicate that BSE inhibits the MLR via the suppression of IL-2Rα expression in CD8+ T cells. BSE has the potential to be developed as an anti-immunosuppression agent for organ transplants. © 2017 by The Korean Society for Microbiology and Biotechnology.

Kim J.-J.,Agency for Science, Technology and Research Singapore | Hwang Y.-H.,Sunchon National University | Kang K.-Y.,Sunchon National University | Lee S.-J.,Sunchon National University | And 4 more authors.
Journal of Immunology Research | Year: 2017

Lectins are carbohydrate-binding proteins with various biological activities, such as antitumor and immunomodulatory effects. Although lectins have various biological activities, they are still limited by cytotoxicity in normal cells. To overcome this problem, we used the noncytotoxic part of Korean mistletoe lectin B-chain (KML-B) to induce maturation of dendritic cells (DCs). A previous study reported that KML-B induces DC maturation by triggering TLR-4, including expression of costimulatory molecules (CD40, CD80, and CD86), MHC II, and secretion of cytokines in DCs. Additionally, matured DCs by KML-B induced T helper (Th) cell activation and differentiation toward Th1 cells. However, the interaction of KML-B-Treated DCs with CD8+ T cells is still poorly understood. In this study, we confirmed the ability of matured DCs by KML-B to stimulate cytotoxic T cells using OT-1 mouse-derived CD8+ T cells. KML-B induced MHC I expression in DCs, stimulation of CD8+ T cell activation and proliferation, and IFN-γ secretion. Moreover, tumor sizes were reduced by KML-B treatment during vaccination of OVA257-264-pulsed DCs. Here, we confirmed induction of CD8+ T cell activation and the antitumor effect of KML-B treatment in DCs. © 2017 Jong-Jin Kim et al.

Hwang Y.-H.,Sunchon National University | Paik M.-J.,Sunchon National University | Yee S.-T.,Sunchon National University | Yee S.-T.,Suncheon Research Center for Natural Medicines
Toxicology Letters | Year: 2017

Diisononyl phthalate (DINP), a member of the phthalate family, is used to plasticize polyvinyl chloride (PVC). This chemical is known to enhance airway inflammation in the OVA-induced asthma model (adjuvant effects) and aggravate allergic dermatitis. Moreover, DINP enhances the production of interleukin-4 in activated CD4+ T cells. However, the effect of DINP itself on the differentiation of naïve CD4+ T cells into T helper cells (Th1/Th2) in vitro and allergic asthma in vivo has not yet been studied. In this study, DINP was shown to suppress the polarization of Th1 and enhance the polarization of Th2 from naïve CD4+ T cells in vitro. Also, DINP induced allergic asthma via the production of IL-4, IL-5, IgE and IgG1 and the reduction of IFN-γ and IgG2a. Finally, we confirmed that exposure to DINP induces the infiltration of inflammatory cells and PAS positive cells and increases the expression of caspase-1 and caspase-3 in asthmatic mice. In conclusion, we suggest that DINP as an environmental pollutant or endocrine disruptor (ECD) induces asthma via the modulation of the Th1/Th2 equilibrium and production of Th2 mediated cytokines and immunoglobulin. © 2017 Elsevier B.V.

Lee M.,Sunchon National University | Lee M.,Suncheon Research Center for Natural Medicines | Sung S.,Seoul National University
Pharmacognosy Magazine | Year: 2016

Background: Obesity causes or aggravates many health problems, both independently and in association with several pathological disorders, including Type II diabetes, hypertension, atherosclerosis, and cancer. Therefore, we screened small compounds isolated from natural products for the development of anti-obesity drugs. Objective: The purpose of this study was to investigate the anti-adipogenic activities of platyphylloside, diarylheptanoid isolated from Betula platyphylla , which was selected based on the screening using 3T3-L1 cells. Materials and Methods: To evaluate the inhibition of adipocyte differentiation and lipolysis, lipid contents of BPP on were measured using Oil Red O staining in 3T3-L1 cells. The mRNA and protein expression levels of various adipokines were measured by Quantitative real-time PCR and Western blotting analysis, respectively. Results: Platyphylloside showed significant inhibitory activity on adipocyte differentiation in 3T3-L1 cells and suppressed adipocyte differentiation even in the presence of troglitazone, a PPARγ agonist. Platyphylloside might suppress adipocyte differentiation through PPARγ, C/EBPα, and SREBP1-induced adipogenesis, which is synergistically associated with downstream adipocyte-specific gene promoters such as aP2, FAS, SCD-1, LPL, and Adiponectin. In addition, platyphylloside affected lipolysis by down-regulating perilipin and HSL and up-regulating TNFα. Conclusion: Taken together, the results reveal that platyphylloside has anti-adipogenic activity and highlight its potential in the prevention and treatment of obesity. © 2016 Pharmacognosy Magazine Published by Wolters Kluwer - Medknow.

Shim S.-Y.,Sunchon National University | Shim S.-Y.,Suncheon Research Center for Natural Medicines | Shim S.-Y.,Research Institute of Life and Pharmaceutical science | Lee S.-G.,Sunchon National University | And 5 more authors.
Natural Product Sciences | Year: 2017

Angelica koreana is an important medicinal plant for some locals in East Asia including Korea. A few reports have shown the efficacy of its phytochemical constituents. We have isolated and purified one compound falcarindiol (FAL) from the methanolic extract of A. koreana roots. At concentrations from to 1 µM to 25 µM, the FAL isolated from the roots of A. koreana exerted no significant cytotoxicity and down-regulated LPS-stimulated pro-inflammatory cytokine IL-8 in colon epithelial cells, while up-regulating anti-inflammatory cytokine IL-10. In addition, the FAL decreased the expression of LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxy-genase (COX)-2 protein by Western blot analysis. Colon epithelial cells play pivotal roles in regulating the colon immune system and thus FAL is expected to be candidate agent as therapeutic potential for the treatment of inflammatory bowel disease (IBD) by modulating LPS-induced inflammation in colon epithelial cells. © 2017, Korean Society of Pharmacognosy. All rights reserved.

Sim M.-O.,National Development Institute of Korean MedicineJangheung | Ham J.R.,Sunchon National University | Lee M.-K.,Sunchon National University | Lee M.-K.,Suncheon Research Center for Natural Medicines
Biomedicine and Pharmacotherapy | Year: 2017

This study investigated the effects young leaves of reed (Phragmites communis) water extract (YLR) on melanogenesis and oxidative stress using B16F10 cells. YLR decreased the intracellular melanin content, protein expression and enzyme activity of tyrosinase in a dose-dependent manner. YLR significantly decreased the gene and protein expression of melanogeneis-related proteins, such as microphthalmia-associated transcription factor (MITF), and tyrosinase-related protein-1 and -2. In addition, YLR up-regulated the melanogenesis inhibitory proteins, extracellular signal-regulated kinase (ERK) and protein kinase B (AKT), while it dose-dependently down-regulated p38 and cAMP response element-binding protein (CREB). Moreover, YLR significantly reduced H2O2-induced reactive oxygen species levels in B16F10 cells and showed antioxidant activity based on DPPH and ABTS free radical scavenging activity and SOD-like activity. These results suggest that YLR have anti-melanogensis properties that function through regulation of the CREB/MITF/tyrosinase pathway in B16F10 cells and antioxidant activity. Overall, these findings indicate that YLR has the potential for use in treatment of skin disorders and skin-whitening. © 2017 Elsevier Masson SAS

Han S.-Y.,Sunchon National University | Hong C.-E.,Chonbuk National University | Kim H.-G.,Chonbuk National University | Lyu S.-Y.,Sunchon National University | Lyu S.-Y.,Suncheon Research Center for Natural Medicines
Molecular and Cellular Biochemistry | Year: 2015

In this study, we evaluated the effects of Korean mistletoe (Viscum album L. var. coloratum) coated with a biodegradable polymer (Eudragit®) wall on the growth of mouse melanoma in vivo. Oral administration of 4 % (430 mg/kg/day) enteric-coated mistletoe resulted in a significant reduction in tumor volume on day 14 compared to the negative control group in B16F10 melanoma-inoculated BDF1 mice. When we measured the survival rate, enteric-coated mistletoe-received mice had a higher survival rate after day 12. Also, we investigated the mechanism involving the cancer cell growth inhibition when melanoma cells were treated with Korean mistletoe lectin (Viscum album L. var. coloratum agglutinin, VCA) and its extract in vitro. As a result, a significant G0/G1 arrest was observed in both B16BL6 and B16F10 melanoma cells with VCA or mistletoe extract. In addition, VCA or mistletoe extract induced an increase in both early and late apoptosis in cells. When we studied the molecular mechanism, our results showed that VCA and mistletoe extract can increase activated multiple caspases (caspase-1, 3, 4, 5, 6, 7, 8, and 9), dose-dependently. We also found out that VCA and mistletoe treatment causes a significant decrease in the expression of procaspase-3 and 8. © 2015, Springer Science+Business Media New York.

Ham J.R.,Sunchon National University | Lee H.-I.,Mokpo Marin Food Industry Research Center | Choi R.-Y.,Sunchon National University | Sim M.-O.,Jeollanamdo Development Institute of Korean Traditional Medicine | And 3 more authors.
Food and Function | Year: 2016

This study examined the effects of syringic acid (SA) on obese diet-induced hepatic dysfunction. Mice were fed high-fat diet (HFD) with or without SA (0.05%, wt/wt) for 16 weeks. SA reduced the body weight, visceral fat mass, serum levels of leptin, TNFα, IFNγ, IL-6 and MCP-1, insulin resistance, hepatic lipid content, droplets and early fibrosis, whereas it elevated the circulation of adiponectin. SA down-regulated lipogenic genes (Cidea, PPARγ, Srebp-1c, Srebp-2, Hmgcr, Fasn) and inflammatory genes (Tlr4, Myd88, NF-κB, Tnfα, Il6), whereas it up-regulated fatty acid oxidation genes (PPARα, Acsl, Cpt1, Cpt2) in the liver. SA also decreased hepatic lipogenic enzyme activities and elevated fatty acid oxidation enzyme activities relative to the HFD group. These findings suggested that dietary SA possesses anti-obesity, anti-inflammatory and anti-steatotic effects via the regulation of lipid metabolic and inflammatory genes. SA is likely to be a new natural therapeutic agent for obesity or non-alcoholic liver disease. © The Royal Society of Chemistry 2015.

Kim H.J.,Sunchon National University | Jeong Y.S.,Sunchon National University | Jung W.K.,Suncheon Research Center for Natural Medicines | Kim S.K.,Sunchon National University | And 5 more authors.
Molecular Biotechnology | Year: 2015

Two genes encoding lipolytic enzymes were isolated from a metagenomic library constructed from oil-polluted mud flats. An esterase gene, est3K, encoded a protein of 299 amino acids (ca. 32,364 Da). Est3K was a family IV esterase with typical motifs, HGGG, and HGF. Although est3K showed high identity to many genes with no information on their enzymatic properties, Est3K showed the highest identity (36 %) to SBLip5.1 from forest soil metagenome when compared to the enzymes with reported properties. A lipase gene, lip3K, encoded a protein of 616 amino acids (ca. 64,408 Da). Lip3K belonged to family I.3 lipase with a C-terminal secretion signal and showed the highest identity (93 %) to the lipase of Pseudomonas sp. MIS38. The presence of several newly identified conserved motifs in Est3K and Lip3K are suggested. Both Est3K and Lip3K exerted their maximal activity at pH 9.0 and 50 °C. The activity of Lip3K was significantly increased by the presence of 30 % methanol. The ability of the enzymes to retain activities in the presence of methanol and the substrates may offer a merit to the biotechnological applications of the enzymes such as transesterification. The activity and the thermostability of Lip3K were increased by Ca2+. Est3K and Lip3K preferred p-nitrophenyl butyrate (C4) and octanoate (C8), respectively, as the substrate and acted independently on the substrates with no synergistic effect. © 2015 Springer Science+Business Media New York

Hwang Y.-H.,Sunchon National University | Kang K.-Y.,Sunchon National University | Kim J.-J.,Agency for Science, Technology and Research Singapore | Lee S.-J.,Sunchon National University | And 5 more authors.
Evidence-based Complementary and Alternative Medicine | Year: 2016

Polygonum multiflorum (PM), a traditional Chinese medicine, is used to treat various diseases including nonalcoholic fatty liver disease and hyperlipidemia. However, the influence of PM on osteoporosis in animals is unclear. The present study investigated the antiosteoporotic effect of PM on bone mass in ovariectomized (OVX) mice and its possible mechanism of action. Twenty-five female C3H/HeN mice were divided into five groups of five mice as follows. Sham-operated control mice received daily oral gavage of an equal volume of water, and OVX mice received daily oral gavage of water or an injection of β-estradiol or PM for 6 weeks. Administration of PM significantly suppressed body weight and organs weight and increased weight and length of bone compared with the OVX group. Treatment with PM reversed osteopenia in OVX mice, thereby improving the bone morphometric parameters. Moreover, histological analysis using hematoxylin and eosin staining showed that PM inhibited OVX-induced bone loss. Serum estradiol and bone alkaline phosphatase levels were significantly decreased in the OVX group, with the levels increasing with PM treatment. In addition, tartrate-resistant acid phosphatase activity was inhibited by PM in OVX mice. These results suggest that PM is effective in preventing bone loss in OVX mice. © 2016 Yun-Ho Hwang et al.

Loading Suncheon Research Center for Natural Medicines collaborators
Loading Suncheon Research Center for Natural Medicines collaborators