Entity

Time filter

Source Type


Borras E.,Institute Catala dOncologia | Pineda M.,Institute Catala dOncologia | Blanco I.,Institute Catala dOncologia | Jewett E.M.,University of Michigan | And 22 more authors.
Cancer Research | Year: 2010

The variants c.306+5G>A and c.1865T>A (p.Leu622His) of the DNA repair gene MLH1 occur frequently in Spanish Lynch syndrome families. To understand their ancestral history and clinical effect, we performed functional assays and a penetrance analysis and studied their genetic and geographic origins. Detailed family histories were taken from 29 carrier families. Functional analysis included in silico and in vitro assays at the RNA and protein levels. Penetrance was calculated using a modified segregation analysis adjusted for ascertainment. Founder effects were evaluated by haplotype analysis. The identified MLH1 c.306+5G>A and c.1865T>A (p.Leu622His) variants are absent in control populations and segregate with the disease. Tumors from carriers of both variants show microsatellite instability and loss of expression of the MLH1 protein. The c.306+5G>A variant is a pathogenic mutation affecting mRNA processing. The c.1865T>A (p.Leu622His) variant causes defects in MLH1 expression and stability. For both mutations, the estimated penetrance is moderate (age-cumulative colorectal cancer risk by age 70 of 20.1% and 14.1% for c.306+5G>A and of 6.8% and 7.3% for c.1865T>A in men and women carriers, respectively) in the lower range of variability estimated for other pathogenic Spanish MLH1 mutations. A common haplotype was associated with each of the identified mutations, confirming their founder origin. The ages of c.306+5G>A and c.1865T>A mutations were estimated to be 53 to 122 and 12 to 22 generations, respectively. Our results confirm the pathogenicity, moderate penetrance, and founder origin of the MLH1 c.306+5G>A and c.1865T>A mutations. These findings have important implications for genetic counseling and molecular diagnosis of Lynch syndrome. ©2010 AACR. Source


Petridis C.,Kings College London | Brook M.N.,The Institute of Cancer Research | Shah V.,Kings College London | Kohut K.,Queen Mary, University of London | And 108 more authors.
Breast Cancer Research | Year: 2016

Background: Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer. It is often associated with invasive ductal carcinoma (IDC), and is considered to be a non-obligate precursor of IDC. It is not clear to what extent these two forms of cancer share low-risk susceptibility loci, or whether there are differences in the strength of association for shared loci. Methods: To identify genetic polymorphisms that predispose to DCIS, we pooled data from 38 studies comprising 5,067 cases of DCIS, 24,584 cases of IDC and 37,467 controls, all genotyped using the iCOGS chip. Results: Most (67 %) of the 76 known breast cancer predisposition loci showed an association with DCIS in the same direction as previously reported for invasive breast cancer. Case-only analysis showed no evidence for differences between associations for IDC and DCIS after considering multiple testing. Analysis by estrogen receptor (ER) status confirmed that loci associated with ER positive IDC were also associated with ER positive DCIS. Analysis of DCIS by grade suggested that two independent SNPs at 11q13.3 near CCND1 were specific to low/intermediate grade DCIS (rs75915166, rs554219). These associations with grade remained after adjusting for ER status and were also found in IDC. We found no novel DCIS-specific loci at a genome wide significance level of P < 5.0x10-8. Conclusion: In conclusion, this study provides the strongest evidence to date of a shared genetic susceptibility for IDC and DCIS. Studies with larger numbers of DCIS are needed to determine if IDC or DCIS specific loci exist. © 2016 Petridis et al. Source


Kabisch M.,German Cancer Research Center | Bermejo J.L.,University of Heidelberg | Dunnebier T.,German Cancer Research Center | Ying S.,German Cancer Research Center | And 175 more authors.
Carcinogenesis | Year: 2014

The chromosomal passenger complex (CPC) plays a pivotal role in the regulation of cell division. Therefore, inherited CPC variability could influence tumor development. The present candidate gene approach investigates the relationship between single nucleotide polymorphisms (SNPs) in genes encoding key CPC components and breast cancer risk. Fifteen SNPs in four CPC genes (INCENP, AURKB, BIRC5 and CDCA8) were genotyped in 88 911 European women from 39 case-control studies of the Breast Cancer Association Consortium. Possible associations were investigated in fixedeffects meta-analyses. The synonymous SNP rs1675126 in exon 7 of INCENP was associated with overall breast cancer risk [per A allele odds ratio (OR) 0.95, 95% confidence interval (CI) 0.92-0.98, P = 0.007] and particularly with estrogen receptor (ER)-negative breast tumors (per A allele OR 0.89, 95% CI 0.83-0.95, P = 0.0005). SNPs not directly genotyped were imputed based on 1000 Genomes. The SNPs rs1047739 in the 3′ untranslated region and rs144045115 downstream of INCENP showed the strongest association signals for overall (per T allele OR 1.03, 95% CI 1.00-1.06, P = 0.0009) and ER-negative breast cancer risk (per A allele OR 1.06, 95% CI 1.02-1.10, P = 0.0002). Two genotyped SNPs in BIRC5 were associated with familial breast cancer risk (top SNP rs2071214: per G allele OR 1.12, 95% CI 1.04-1.21, P = 0.002). The data suggest that INCENP in the CPC pathway contributes to ER-negative breast cancer susceptibility in the European population. In spite of a modest contribution of CPC-inherited variants to the total burden of sporadic and familial breast cancer, their potential as novel targets for breast cancer treatment should be further investigated. © The Author 2015. Source


Guo Q.,University of Cambridge | Schmidt M.K.,Netherlands Cancer Institute | Kraft P.,Harvard University | Canisius S.,Netherlands Cancer Institute | And 165 more authors.
Journal of the National Cancer Institute | Year: 2015

Background: Survival after a diagnosis of breast cancer varies considerably between patients, and some of this variation may be because of germline genetic variation. We aimed to identify genetic markers associated with breast cancer-specific survival. Methods: We conducted a large meta-analysis of studies in populations of European ancestry, including 37954 patients with 2900 deaths from breast cancer. Each study had been genotyped for between 200000 and 900000 single nucleotide polymorphisms (SNPs) across the genome; genotypes for nine million common variants were imputed using a common reference panel from the 1000 Genomes Project. We also carried out subtype-specific analyses based on 6881 estrogen receptor (ER)-negative patients (920 events) and 23059 ER-positive patients (1333 events). All statistical tests were two-sided. Results: We identified one new locus (rs2059614 at 11q24.2) associated with survival in ER-negative breast cancer cases (hazard ratio [HR] = 1.95, 95% confidence interval [CI] = 1.55 to 2.47, P = 1.91 x 10-8). Genotyping a subset of 2113 case patients, of which 300 were ER negative, provided supporting evidence for the quality of the imputation. The association in this set of case patients was stronger for the observed genotypes than for the imputed genotypes. A second locus (rs148760487 at 2q24.2) was associated at genome-wide statistical significance in initial analyses; the association was similar in ER-positive and ER-negative case patients. Here the results of genotyping suggested that the finding was less robust. Conclusions: This is currently the largest study investigating genetic variation associated with breast cancer survival. Our results have potential clinical implications, as they confirm that germline genotype can provide prognostic information in addition to standard tumor prognostic factors. © 2015 © The Author 2015. Published by Oxford University Press. Source


Lei J.,German Cancer Research Center | Rudolph A.,German Cancer Research Center | Moysich K.B.,Roswell Park Cancer Institute | Behrens S.,German Cancer Research Center | And 101 more authors.
Human Genetics | Year: 2016

Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases and 40,577 controls of European ancestry from 37 studies in the Breast Cancer Association Consortium (2015) with available genotype data for 3595 single nucleotide polymorphisms (SNPs) in 133 candidate genes. Associations between genotyped SNPs and overall breast cancer risk, and secondarily according to estrogen receptor (ER) status, were assessed using multiple logistic regression models. Gene-level associations were assessed based on principal component analysis. Gene expression analyses were conducted using RNA sequencing level 3 data from The Cancer Genome Atlas for 989 breast tumor samples and 113 matched normal tissue samples. SNP rs1905339 (A>G) in the STAT3 region was associated with an increased breast cancer risk (per allele odds ratio 1.05, 95 % confidence interval 1.03–1.08; p value = 1.4 × 10−6). The association did not differ significantly by ER status. On the gene level, in addition to TGFBR2 and CCND1, IL5 and GM-CSF showed the strongest associations with overall breast cancer risk (p value = 1.0 × 10−3 and 7.0 × 10−3, respectively). Furthermore, STAT3 and IL5 but not GM-CSF were differentially expressed between breast tumor tissue and normal tissue (p value = 2.5 × 10−3, 4.5 × 10−4 and 0.63, respectively). Our data provide evidence that the immunosuppression pathway genes STAT3,IL5, and GM-CSF may be novel susceptibility loci for breast cancer in women of European ancestry. © 2015, The Author(s). Source

Discover hidden collaborations