Entity

Time filter

Source Type


Armengol L.,QGenomics Laboratory | Nevado J.,Hospital Universitario La Paz | Nevado J.,Research Center en Red en Enfermedades Raras | Serra-Juhe C.,Research Center en Red en Enfermedades Raras | And 23 more authors.
Human Genetics | Year: 2012

Novel methodologies for detection of chromosomal abnormalities have been made available in the recent years but their clinical utility in prenatal settings is still unknown. We have conducted a comparative study of currently available methodologies for detection of chromosomal abnormalities after invasive prenatal sampling.Amulticentric collection of a 1-year series of fetal samples with indication for prenatal invasive sampling was simultaneously evaluated using three screening methodologies: (1) karyotype and quantitative fluorescent polymerase chain reaction (QF-PCR), (2) two panels of multiplex ligation-dependent probe amplification (MLPA), and (3) chromosomal microarray-based analysis (CMA) with a targeted BAC microarray. A total of 900 pregnantwomen provided informed consent to participate (94% acceptance rate). Technical performance was excellent for karyotype, QF-PCR, and CMA (∼1% failure rate), but relatively poor for MLPA (10% failure). Mean turn-around time (TAT) was 7 days forCMA orMLPA, 25 for karyotype, and two for QF-PCR, with similar combined costs for the different approaches. A total of 57 clinically significant chromosomal aberrations were found (6.3%), with CMA yielding the highest detection rate (32% above other methods). The identification of variants of uncertain clinical significance by CMA (17, 1.9%) tripled that of karyotype and MLPA, but most alterations could be classified as likely benign after proving they all were inherited. High acceptability, significantly higher detection rate and lower TAT, could justify the higher cost of CMAand favor targeted CMA as the best method for detection of chromosomal abnormalities in at-risk pregnancies after invasive prenatal sampling. © The Author(s) 2011.


Rodriguez C.E.,University of Malaga | Palacios J.,University of Malaga | Fajardo I.,University of Malaga | Fajardo I.,Research Center en Red en Enfermedades Raras | And 7 more authors.
Journal of the American Society for Mass Spectrometry | Year: 2016

This is the first study where graphene is used as a MALDI adjuvant in combination with the traditional matrix α-cyano-4-hydroxycinnamic acid (CHCA) to improve the signal intensity of peptide samples. Use of this amended matrix not only leads to increased signals but also to a higher number of peaks detected in complex samples. Additionally, the use of graphene has a stabilizing effect that can also be exploited to improve the detection of easily cleavable molecules. © 2015 American Society for Mass Spectrometry.

Discover hidden collaborations