Entity

Time filter

Source Type


Artegiani B.,Research Center and Cluster of Excellence for Regenerative Therapies Dresden
Journal of visualized experiments : JoVE | Year: 2012

Somatic stem cells can divide to generate additional stem cells (expansion) or more differentiated cell types (differentiation), which is fundamental for tissue formation during embryonic development and tissue homeostasis during adulthood (1). Currently, great efforts are invested towards controlling the switch of somatic stem cells from expansion to differentiation because this is thought to be fundamental for developing novel strategies for regenerative medicine (1,2). However, a major challenge in the study and use of somatic stem cell is that their expansion has been proven very difficult to control. Here we describe a system that allows the control of neural stem/progenitor cell (altogether referred to as NSC) expansion in the mouse embryonic cortex or the adult hippocampus by manipulating the expression of the cdk4/cyclinD1 complex, a major regulator of the G1 phase of the cell cycle and somatic stem cell differentiation (3,4). Specifically, two different approaches are described by which the cdk4/cyclinD1 complex is overexpressed in NSC in vivo. By the first approach, overexpression of the cell cycle regulators is obtained by injecting plasmids encoding for cdk4/cyclinD1 in the lumen of the mouse telencephalon followed by in utero electroporation to deliver them to NSC of the lateral cortex, thus, triggering episomal expression of the transgenes (5-8). By the second approach, highly concentrated HIV-derived viruses are stereotaxically injected in the dentate gyrus of the adult mouse hippocampus, thus, triggering constitutive expression of the cell cycle regulators after integration of the viral construct in the genome of infected cells (9). Both approaches, whose basic principles were already described by other video protocols (10-14), were here optimized to i) reduce tissue damage, ii) target wide portions of very specific brain regions, iii) obtain high numbers of manipulated cells within each region, and iv) trigger high expression levels of the transgenes within each cell. Transient overexpression of the transgenes using the two approaches is obtained by different means i.e. by natural dilution of the electroporated plasmids due to cell division or tamoxifen administration in Cre-expressing NSC infected with viruses carrying cdk4/cyclinD1 flanked by loxP sites, respectively (9,15). These methods provide a very powerful platform to acutely and tissue-specifically manipulate the expression of any gene in the mouse brain. In particular, by manipulating the expression of the cdk4/cyclinD1 complex, our system allows the temporal control of NSC expansion and their switch to differentiation, thus, ultimately increasing the number of neurons generated in the mammalian brain. Our approach may be critically important for basic research and using somatic stem cells for therapy of the mammalian central nervous system while providing a better understanding of i) stem cell contribution to tissue formation during development, ii) tissue homeostasis during adulthood, iii) the role of adult neurogenesis in cognitive functions, and perhaps, iv) better using somatic stem cells in models of neurodegenerative diseases. Source


Poitz D.M.,TU Dresden | Stolzel F.,TU Dresden | Arabanian L.,TU Dresden | Friedrichs J.,Leibniz Institute of Polymer Research | And 12 more authors.
Biochimica et Biophysica Acta - Molecular Cell Research | Year: 2013

The composition of the hematopoietic stem cell (HSC) niche within the bone marrow is highly dynamic, tightly regulated, and of importance for various HSC properties. Integrins are important molecules within this niche that influence those properties through the interactions of HSCs and mesenchymal stem cells (MSCs). Here we investigated the function of miR-134 in integrin regulation in MSCs. In MSCs, miR-134 post-transcriptionally regulated β1 integrin expression. This negative regulation of β1 integrin was mediated by the binding of miR-134 to its 3' untranslated region, which contains two conserved binding sites for miR-134. The miR-134-mediated silencing of β1 integrin in MSCs was shown by atomic force microscopy to decrease the adhesion of 32D cells to MSCs transfected with miR-134. Furthermore, the adhesion of MSCs to fibronectin was reduced after transfection with miR-134. MSCs from patients with myelodysplastic syndrome (MDS) revealed highly significant miR-134 overexpression compared with MSCs from healthy bone marrow donors. MSCs from MDS patients showed lower β1 integrin protein, but not lower mRNA, expression, suggesting post-transcriptional regulation. The present study demonstrates miR-134-mediated negative regulation of β1 integrin that influences cell adhesion to and of MSCs. These results further contribute to our understanding of the complexity of MDS. © 2013 Elsevier B.V. Source


Artegiani B.,Research Center and Cluster of Excellence for Regenerative Therapies Dresden | Lange C.,Research Center and Cluster of Excellence for Regenerative Therapies Dresden | Calegari F.,Research Center and Cluster of Excellence for Regenerative Therapies Dresden
Journal of Visualized Experiments | Year: 2012

Somatic stem cells can divide to generate additional stem cells (expansion) or more differentiated cell types (differentiation), which is fundamental for tissue formation during embryonic development and tissue homeostasis during adulthood. Currently, great efforts are invested towards controlling the switch of somatic stem cells from expansion to differentiation because this is thought to be fundamental for developing novel strategies for regenerative medicine. However, a major challenge in the study and use of somatic stem cell is that their expansion has been proven very difficult to control. Here we describe a system that allows the control of neural stem/progenitor cell (altogether referred to as NSC) expansion in the mouse embryonic cortex or the adult hippocampus by manipulating the expression of the cdk4/cyclinD1 complex, a major regulator of the G1 phase of the cell cycle and somatic stem cell differentiation. Specifically, two different approaches are described by which the cdk4/cyclinD1 complex is overexpressed in NSC in vivo. By the first approach, overexpression of the cell cycle regulators is obtained by injecting plasmids encoding for cdk4/cyclinD1 in the lumen of the mouse telencephalon followed by in utero electroporation to deliver them to NSC of the lateral cortex, thus, triggering episomal expression of the transgenes. By the second approach, highly concentrated HIV-derived viruses are stereotaxically injected in the dentate gyrus of the adult mouse hippocampus, thus, triggering constitutive expression of the cell cycle regulators after integration of the viral construct in the genome of infected cells 9. Both approaches, whose basic principles were already described by other video protocols, were here optimized to i) reduce tissue damage, ii) target wide portions of very specific brain regions, iii) obtain high numbers of manipulated cells within each region, and iv) trigger high expression levels of the transgenes within each cell. Transient overexpression of the transgenes using the two approaches is obtained by different means i.e. by natural dilution of the electroporated plasmids due to cell division or tamoxifen administration in Cre-expressing NSC infected with viruses carrying cdk4/cyclinD1 flanked by loxP sites, respectively. These methods provide a very powerful platform to acutely and tissue-specifically manipulate the expression of any gene in the mouse brain. In particular, by manipulating the expression of the cdk4/cyclinD1 complex, our system allows the temporal control of NSC expansion and their switch to differentiation, thus, ultimately increasing the number of neurons generated in the mammalian brain. Our approach may be critically important for basic research and using somatic stem cells for therapy of the mammalian central nervous system while providing a better understanding of i) stem cell contribution to tissue formation during development, ii) tissue homeostasis during adulthood, iii) the role of adult neurogenesis in cognitive functions, and perhaps, iv) better using somatic stem cells in models of neurodegenerative diseases. © 2012 Creative Commons Attribution-NonCommercial License. Source

Discover hidden collaborations