Entity

Time filter

Source Type

Lubbock, TX, United States

Holliday Jr. M.W.,Texas Tech University Health Sciences Center | Cox S.B.,Research and Testing Laboratory | Kang M.H.,Texas Tech University Health Sciences Center | Maurer B.J.,Texas Tech University Health Sciences Center
PLoS ONE | Year: 2013

We previously reported that fenretinide (4-HPR) was cytotoxic to acute lymphoblastic leukemia (ALL) cell lines in vitro in association with increased levels of de novo synthesized dihydroceramides, the immediate precursors of ceramides. However, the cytotoxic potentials of native dihydroceramides have not been defined. Therefore, we determined the cytotoxic effects of increasing dihydroceramide levels via de novo synthesis in T-cell ALL cell lines and whether such cytotoxicity was dependent on an absolute increase in total dihydroceramide mass versus an increase of certain specific dihydroceramides. A novel method employing supplementation of individual fatty acids, sphinganine, and the dihydroceramide desaturase-1 (DES) inhibitor, GT-11, was used to increase de novo dihydroceramide synthesis and absolute levels of specific dihydroceramides and ceramides. Sphingolipidomic analyses of four T-cell ALL cell lines revealed strong positive correlations between cytotoxicity and levels of C22:0-dihydroceramide (ρ = 0.74-0.81, P ≤ 0.04) and C24:0-dihydroceramide (ρ = 0.84-0.90, P ≤ 0.004), but not between total or other individual dihydroceramides, ceramides, or sphingoid bases or phosphorylated derivatives. Selective increase of C22:0- and C24:0-dihydroceramide increased level and flux of autophagy marker, LC3B-II, and increased DNA fragmentation (TUNEL assay) in the absence of an increase of reactive oxygen species; pan-caspase inhibition blocked DNA fragmentation but not cell death. C22:0-fatty acid supplemented to 4-HPR treated cells further increased C22:0-dihydroceramide levels (P ≤ 0.001) and cytotoxicity (P ≤ 0.001). These data demonstrate that increases of specific dihydroceramides are cytotoxic to T-cell ALL cells by a caspase-independent, mixed cell death mechanism associated with increased autophagy and suggest that dihydroceramides may contribute to 4-HPR-induced cytotoxicity. The targeted increase of specific acyl chain dihydroceramides may constitute a novel anticancer approach. © 2013 Holliday et al. Source


Schaible T.D.,Baylor College of Medicine | Harris R.A.,Baylor College of Medicine | Dowd S.E.,Research and Testing Laboratory | Smith C.W.,Baylor College of Medicine | Kellermayer R.,Baylor College of Medicine
Human Molecular Genetics | Year: 2011

Developmental epigenetic changes, such as DNA methylation, have been recognized as potential pathogenic factors in inflammatory bowel diseases, the hallmark of which is an exaggerated immune response against luminal microbes. A methyl-donor (MD) diet can modify DNA methylation at select murine genomic loci during early development. The components of the MDs are routinely incorporated into prenatal human supplements. Therefore, we studied the effects of maternal MD supplementation on offspring colitis susceptibility and colonic mucosal DNA methylation and gene expression changes in mice as a model. Additionally, we investigated the offspring mucosal microbiomic response to the maternal dietary supplementation. Colitis was induced by dextran sulfate sodium. Colonic mucosa from offspring of MD-supplemented mothers following reversal to control diet at weaning was interrogated by methylation-specific microarrays and pyrosequencing at postnatal days 30 (P30) and P90. Transcriptomic changes were analyzed by microarray profiling and real-time reverse transcription polymerase chain reaction. The mucosal microbiome was studied by high throughput pyrosequencing of 16S rRNA. Maternal MD supplementation induced a striking susceptibility to colitis in offspring. This phenotype was associated with colonic mucosal DNA methylation and expression changes. Metagenomic analyses did not reveal consistent bacteriomic differences between P30 and P90, but showed a prolonged effect of the diet on the offspring mucosal microbiome. In conclusion, maternal MD supplementation increases offspring colitis susceptibility that associates with persistent epigenetic and prolonged microbiomic changes. These findings underscore that epigenomic reprogramming relevant to mammalian colitis can occur during early development in response to maternal dietary modifications. © The Author 2011. Published by Oxford University Press. All rights reserved. Source


Hail D.,University of Texas at Tyler | Dowd S.E.,Research and Testing Laboratory | Bextine B.,University of Texas at Tyler
Environmental Entomology | Year: 2012

The potato psyllid (Bactericera cockerelli, Sulc) is an invasive pest of solenaceous plants including potatoes (Solanum tuberosum L.)and tomatoes (Solanum lycopersicum L.). The insect transmits the phytopathogen Candidatus Liberibacter solanacearum, which has been identified as the causal agent of Zebra Chip in potatoes. The microbiome of the potato psyllid provides knowledge of the insect's bacterial makeup which enables researchers to develop targeted biological control strategies. In this study, the microbes associated with four B. cockerelli life stages were evaluated by 16S bTEFAP pyrosequencing. The sequences were compared with a 16S-rDNA database derived from NCBI's GenBank. Some bacteria identified are initial discoveries. Species of Wolbachia, Rhizobium, Gordonia, Mycobacterium, Xanthomonas and others were also detected and an assessment of the microbiome associated with B. cockerelli was established. © 2012 Entomological Society of America. Source


Galley J.D.,Ohio State University | Yu Z.,Ohio State University | Kumar P.,Ohio State University | Dowd S.E.,Research and Testing Laboratory | And 2 more authors.
Gut Microbes | Year: 2015

The commensal microbiota of the human gastrointestinal tract live in a largely stable community structure, assisting in host physiological and immunological functions. Changes to this structure can be injurious to the health of the host, a concept termed dysbiosis. Psychological stress is a factor that has been implicated in causing dysbiosis, and studies performed by our lab have shown that restraint stress can indeed shift the cecal microbiota structure as well as increase the severity of a colonic infection caused by Citrobacter rodentium. However, this study, like many others, have focused on fecal contents when examining the effect of dysbiosis-causing stimuli (e.g. psychological stress) upon the microbiota. Since the mucosa-associated microbiota have unique properties and functions that can act upon the host, it is important to understand how stressor exposure might affect this niche of bacteria. To begin to understand whether chronic restraint stress changes the mucosa-associated and/or luminal microbiota mice underwent 7 16-hour cycles of restraint stress, and the microbiota of both colonic tissue and fecal contents were analyzed by sequencing using nextgen bacterial tag-encoded FLX amplicon technology (bTEFAP) pyrosequencing. Both control and stress groups had significantly different mucosa-associated and luminal microbiota communities, highlighting the importance of focusing gastrointestinal community structure analysis by microbial niche. Furthermore, restraint stress was able to disrupt both the mucosa-associated and luminally-associated colonic microbiota by shifting the relative abundances of multiple groups of bacteria. Among these changes, there was a significant reduction in the immunomodulatory commensal genus Lactobacillus associated with colonic mucosa. The relative abundance of Lactobacillus spp. was not affected in the lumen. These results indicate that stressor-exposure can have distinct effects upon the colonic microbiota situated at the mucosal epithelium in comparison to the luminal-associated microbiota. © 2014 Taylor & Francis Group, LLC. Source


Sun Y.,Research and Testing Laboratory
Methods in molecular biology (Clifton, N.J.) | Year: 2011

Comprehensive evaluation of microbial diversity in almost any environment is now possible. Questions such as "Does the addition of fiber to the diet of humans change the gastrointestinal microbiota?" can now be answered easily and inexpensively. Tag-encoded FLX-amplicon pyrosequencing (TEFAP) has been utilized to evaluate bacterial, archaeal, fungal, algal, as well as functional genes. Using the new tag-encoded FLX amplicon pyrosequencing (bTEFAP) approach, we have evaluated the microbial diversity using a more cost-effective and largely reproducible method that would allow us to sequence the ribosomal RNA genes of microorganisms (hereafter focused on bacteria), without the need for the inherent bias of culture methods. These developments have ushered in a new age of microbial ecology studies, and we have utilized this technology to evaluate the microbiome in a wide range of systems in almost any conceivable environment. Source

Discover hidden collaborations