Entity

Time filter

Source Type


Yuan W.,Beijing Normal University | Luo Y.,University of Oklahoma | Li X.,Beijing Normal University | Liu S.,U.S. Geological Survey | And 32 more authors.
Global Biogeochemical Cycles | Year: 2011

Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from ∼3S to ∼70N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual temperature can be considered as BR in empirical models. A strong correlation was found between the mean annual ER and mean annual gross primary production (GPP). Consequently, GPP, which is typically more accurately modeled, can be used to estimate BR. A light use efficiency GPP model (i.e., EC-LUE) was applied to estimate global GPP, BR and ER with input data from MERRA (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate resolution Imaging Spectroradiometer). The global ER was 103 Pg C yr -1, with the highest respiration rate over tropical forests and the lowest value in dry and high-latitude areas. Copyright 2011 by the American Geophysical Union. Source


Vayssier-Taussat M.,French National Institute for Agricultural Research | Kazimirova M.,Slovak Academy of Sciences | Hubalek Z.,Academy of Sciences of the Czech Republic | Hornok S.,Szent Istvan University | And 10 more authors.
Future Microbiology | Year: 2015

Ticks, as vectors of several notorious zoonotic pathogens, represent an important and increasing threat for human and animal health in Europe. Recent applications of new technology revealed the complexity of the tick microbiome, which may affect its vectorial capacity. Appreciation of these complex systems is expanding our understanding of tick-borne pathogens, leading us to evolve a more integrated view that embraces the 'pathobiome'; the pathogenic agent integrated within its abiotic and biotic environments. In this review, we will explore how this new vision will revolutionize our understanding of tick-borne diseases. We will discuss the implications in terms of future research approaches that will enable us to efficiently prevent and control the threat posed by ticks. © 2015 Future Medicine Ltd. Source


Timmermans W.,University of Twente | Van Der Tol C.,University of Twente | Timmermans J.,University of Twente | Ucer M.,University of Twente | And 40 more authors.
Acta Geophysica | Year: 2014

The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites. After presenting the different types of measurements, some examples are given to illustrate the potential of the observations made. © 2014 Versita Warsaw and Springer-Verlag Wien Source


Timmermans W.J.,University of Twente | Tol C.V.D.,University of Twente | Timmermans J.,University of Twente | Ucer M.,University of Twente | And 40 more authors.
Acta Geophysica | Year: 2015

The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites. After presenting the different types of measurements, some examples are given to illustrate the potential of the observations made. © 2014 Institute of Geophysics, Polish Academy of Sciences. Source


Shahaf N.,Fondazione Edmund Machinery Research and Innovation Center | Shahaf N.,Hebrew University of Jerusalem | Franceschi P.,Fondazione Edmund Machinery Research and Innovation Center | Arapitsas P.,Fondazione Edmund Machinery Research and Innovation Center | And 3 more authors.
Rapid Communications in Mass Spectrometry | Year: 2013

Rationale Estimation of mass measurement accuracy is an elementary step in the application of mass spectroscopy (MS) data towards metabolite annotations and has been addressed several times in the past. However, the reproducibility of mass measurements over a diverse set of analytes and in variable operating conditions, which are common in high-throughput metabolomics studies, has, to the best of our knowledge, not been addressed so far. Methods A method to automatically extract mass measurement errors from a large data set of measurements made on a quadrupole time-of-flight (QTOF) MS instrument has been developed. The size of the data processed in this study has enabled us to use a statistical data driven approach to build a model which reliably predicts the confidence interval of the absolute mass measurement error based on individual ion peak conditions in a fast, high-throughput manner. RESULTS We show that our model predictions are reproducible in external datasets generated in similar, but not identical conditions, and have demonstrated the advantage of our approach over the common practice of fixed mass measurement error limits. CONCLUSIONS Outlined is an approach which can promote a more rational use of MS technology by automatically evaluating the absolute mass measurement error based on the individual peak conditions. The immediate application of our method is integration in high-throughput peak annotation pipelines for database searches. © 2013 John Wiley & Sons, Ltd. Source

Discover hidden collaborations