Renal Child Foundation

Genova, Italy

Renal Child Foundation

Genova, Italy

Time filter

Source Type

Prunotto M.,Laboratory on Pathophysiology of Uremia | Carnevali M.L.,Nephrology and Health science | Candiano G.,Laboratory on Pathophysiology of Uremia | Murtas C.,Nephrology and Health science | And 15 more authors.
Journal of the American Society of Nephrology | Year: 2010

Glomerular targets of autoimmunity in human membranous nephropathy are poorly understood. Here, we used a combined proteomic approach to identify specific antibodies against podocyte proteins in both serum and glomeruli of patients with membranous nephropathy (MN). We detected specific anti-aldose reductase (AR) and anti-manganese superoxide dismutase (SOD2) IgG4 in sera of patients with MN. We also eluted high titers of anti-AR and anti-SOD2 IgG4 from microdissected glomeruli of three biopsies of MN kidneys but not from biopsies of other glomerulonephritides characterized by IgG deposition (five lupus nephritis and two membranoproliferative glomerulonephritis). We identified both antigens in MN biopsies but not in other renal pathologies or normal kidney. Confocal and immunoelectron microscopy (IEM) showed co-localization of anti-AR and anti-SOD2 with IgG4 and C5b-9 in electron-dense podocyte immune deposits. Preliminary in vitro experiments showed an increase of SOD2 expression on podocyte plasma membrane after treatment with hydrogen peroxide. In conclusion, our data support AR and SOD2 as renal antigens of human MN and suggest that oxidative stress may drive glomerular SOD2 expression. Copyright © 2010 by the American Society of Nephrology.


Candiano G.,G Gaslini Children Hospital | Santucci L.,Renal Child Foundation | Petretto A.,G Gaslini Children Hospital | Bruschi M.,Renal Child Foundation | And 5 more authors.
Journal of Proteomics | Year: 2010

The discovery of urinary biomarkers is a main topic in clinical medicine. The development of proteomics has rapidly changed the knowledge on urine protein composition and probably will modify it again. Two-dimensional electrophoresis (2D-PAGE) coupled with mass spectrometry has represented for years the technique of choice for the analysis of urine proteins and it is time to draw some conclusions. This review will focus on major methodological aspects related to urine sample collection, storage and analysis by 2D-PAGE and attempt to define an advanced normal urine protein map. Overall, 1118 spots were reproducibly found in normal urine samples but only 275 were characterized as isoforms of 82 proteins. One-hundred height spots belonging to 30 proteins were also detected in plasma and corresponded to typical plasma components. The identity of most of the proteins found in normal urine by 2D-PAGE remains to be determined, the majority being low-molecular weight proteins (< 30 kDa). Equalization procedures would also enhance sensitivity of the analysis and allow low abundance proteins to be characterized. Therefore, we are still on the way to define the normal urine composition. Technology advancements in concentrating procedure will improve sensitivity and give the possibility to purify proteins for mass spectrometry. © 2009 Elsevier B.V. All rights reserved.

Loading Renal Child Foundation collaborators
Loading Renal Child Foundation collaborators