Renaissance Energy Investment Co.

Kyoto, Japan

Renaissance Energy Investment Co.

Kyoto, Japan
SEARCH FILTERS
Time filter
Source Type

Miyamoto R.,Renaissance Energy Investment Co. | Miyamoto R.,Kyoto University | Ando Y.,Renaissance Energy Investment Co. | Kurusu C.,Renaissance Energy Investment Co. | And 4 more authors.
Journal of Separation Science | Year: 2013

Reproducible fabrication of the hierarchically porous monolithic silica in a large volume exceeding 1000 mL has been established. By the hydrothermal enlargement of the fully accessible small pores to exceed 50 nm in diameter, the capillary force emerged on solvent evaporation was dramatically reduced, which allowed the preparation of crack-free monoliths with evaporative solvent removal under an ambient pressure. The local temperature inhomogeneity within a reaction vessel in a large volume was precisely controlled to cancel the heat evolved by the hydrolysis reaction of tetramethoxysilane and that consumed to melt ice cubes dispersed in the solution, resulting in large monolithic silica pieces with improved structural homogeneity. Homogeneity of the pore structure was confirmed, both on macro- and mesoscales, using SEM, mercury intrusion, and nitrogen adsorption/desorption measurements. Furthermore, the deviations in chromatographic performance were examined by evaluating multiple smaller monolithic columns prepared from the monolithic silica pieces cut from different parts of a large monolith. All the daughter columns thus prepared exhibited comparable performances to each other to prove the overall homogeneity of the mother monolith. Preliminary results on high-speed separation of peptides and proteins by the octadecylsilylated silica monolith of the above production have also been demonstrated. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Patent
Osaka Prefectural Hospital Organization and Renaissance Energy Investment Co. | Date: 2014-03-31

Disclosed is a novel cell mass derived from a cancer tissue, which can reflect the in vivo behavior of a cancer cell correctly. Also disclosed is a process for preparing the cell mass. Specifically disclosed is a cell mass derived from a cancer tissue, which is an separated product that is isolated from a cancer tissue obtained from an individual as a mass containing at least three cancer cells or a cultured product of the separated product and which can retain a proliferation ability in vitro. The cell mass derived from a cancer tissue is produced by, for example, a preparation process comprising the steps of: treating a pulverized product of a cancer tissue removed from a living body with an enzyme; and selecting and collecting a mass containing at least three cancer cells among from an enzymatic treatment product.


Patent
Osaka Prefectural Hospital Organization and Renaissance Energy Investment Co. | Date: 2013-02-15

Provided are a method for retaining in a dormant state a cancer tissue-derived cell mass that can reflect accurately the in vivo behavior of cancer cells, and an evaluation method for examining the sensitivity to various treatments including a drug sensitivity test by using a cancer tissue-derived cell mass in such a dormant state. The cancer tissue-derived cell mass is prepared from an individual. Such a cancer tissue-derived cell mass is cultured in vitro under the conditions of hypoxia and low levels of growth factors. Furthermore, a treatment with a drug, etc. is applied in vitro to the cancer tissue-derived cell mass in the dormant state so that evaluation is achieved by examination of its proliferation state, determination of life and death, and analysis of signals.


Patent
Renaissance Energy Investment Co. | Date: 2013-10-02

A method for producing a monolithic porous body having a trimodal hierarchical porous structure by a sol-gel method is provided. The method includes a sol preparation step of preparing a precursor sol, a gelation step of inducing a sol-gel transition and a phase separation in parallel on the precursor sol in a gelation container housing a template obtained by configuring organic polymer fibers into an aggregation having a three-dimensional spread, to form a gel made of a co-continuous structure of a hydrogel phase and a solvent phase, in the space around the organic polymer fibers, and a removal step of removing the solvent phase and the organic polymer fibers individually or simultaneously from the gel. The organic polymer fibers have a structure in which the cross section perpendicular to the longitudinal direction is contractible while the extension in the longitudinal direction is restricted. Template holes, through-pores and smallpores are formed in voids remaining after the removal of the organic polymer fibers, voids remaining after the removal of the solvent phase, and a skeleton of the hydrogel phase, respectively.


Patent
Renaissance Energy Investment Co. | Date: 2011-10-18

A method for producing a monolithic porous body having a trimodal hierarchical porous structure by a sol-gel method is provided. The method includes a sol preparation step of preparing a precursor sol, a gelation step of inducing a sol-gel transition and a phase separation in parallel on the precursor sol in a gelation container housing a template obtained by configuring organic polymer fibers into an aggregation having a three-dimensional spread, to form a gel made of a co-continuous structure of a hydrogel phase and a solvent phase, in the space around the organic polymer fibers, and a removal step of removing the solvent phase and the organic polymer fibers individually or simultaneously from the gel. The organic polymer fibers have a structure in which the cross section perpendicular to the longitudinal direction is contractible while the extension in the longitudinal direction is restricted. Template holes, through-pores and smallpores are formed in voids remaining after the removal of the organic polymer fibers, voids remaining after the removal of the solvent phase, and a skeleton of the hydrogel phase, respectively.

Loading Renaissance Energy Investment Co. collaborators
Loading Renaissance Energy Investment Co. collaborators