Entity

Time filter

Source Type

Vadodara, India

Srivastava V.K.,Reliance Industries Ltd RIL | Maiti M.,Reliance Industries Ltd RIL | Jasra R.V.,Reliance Industries Ltd RIL
European Polymer Journal | Year: 2011

The cyclodimerization of 1,3-butadiene was performed to synthesize 1,5-cyclooctadiene by using nickel-phosphite based catalyst system. The optimization of cyclodimerization reaction was done to achieve up to 80% selectivity towards 1,5-cyclooctadiene. 1,5-Cyclooctadiene, thus synthesized, was subsequently employed as a chain transfer agent (CTA) for controlling the molecular weight (M.W.) of cis-polybutadiene rubber (BR) in cobalt-complex catalyzed 1,3-butadiene polymerization reaction. The M.W. of BR was reduced from 6.7 to 1.88 × 105 g/mol by escalating the concentration of 1,5-cyclooctadiene from 0% to 0.5% with respect to 1,3-butadiene (monomer) concentration. Similar reducing trend was observed for the Mooney viscosity and gel content of BR with increasing 1,5-cyclooctadiene concentration. The efficacy of 1,5-cyclooctadiene as a CTA for 1,3-butadiene polymerization reaction was further explored by conducting polymerization reaction in various solvents and at higher monomer conversion (∼70%). The effect of 4-vinyl cyclohexene, which was a dominant byproduct during cyclodimerization of 1,3-butadiene, was also investigated. The presence of 4-vinyl cyclohexene has shown adverse effect in the polymerization reaction and was not functioning as a chain transfer agent. Finally, a feasibility of replacement of commercially used gaseous CTA, 1,2-butadiene, by in-house synthesized liquid CTA, 1,5-cyclooctadiene, was also investigated. © 2011 Elsevier Ltd. All rights reserved. Source


Srivastava V.K.,Reliance Industries Ltd RIL | Maiti M.,Reliance Industries Ltd RIL | Basak G.C.,Reliance Industries Ltd RIL | Jasra R.V.,Reliance Industries Ltd RIL
Journal of Chemical Sciences | Year: 2014

Elastomer business plays a significant role in the transportation industry. In fact, elastomers make the world move. Due to limited availability of natural rubber, synthetic elastomers bridge the gap between demand and supply in today's growing tyre and automobile industry. With more than ∼ 10000 KTA total world productions, the impact of synthetic elastomer business cannot be overlooked. The need of synthetic elastomers for tyre and automobile industries is stringently specific. Catalysis plays an inevitable role in achieving the growing demand of specific synthetic elastomers. The present study will describe how catalysis plays a significant role in the sustainable development of elastomers with special reference to polybutadiene rubber. © 2014 Indian Academy of Sciences. Source

Discover hidden collaborations