Time filter

Source Type

Bellmann S.,TNO | Carlander D.,Nanotechnology Industries Association | Fasano A.,Harvard University | Momcilovic D.,U.S. Food and Drug Administration | And 7 more authors.
Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology

Many natural chemicals in food are in the nanometer size range, and the selective uptake of nutrients with nanoscale dimensions by the gastrointestinal (GI) tract is a normal physiological process. Novel engineered nanomaterials (NMs) can bring various benefits to food, e.g., enhancing nutrition. Assessing potential risks requires an understanding of the stability of these entities in the GI lumen, and an understanding of whether or not they can be absorbed and thus become systemically available. Data are emerging on the mammalian in vivo absorption of engineered NMs composed of chemicals with a range of properties, including metal, mineral, biochemical macromolecules, and lipid-based entities. In vitro and in silico fluid incubation data has also provided some evidence of changes in particle stability, aggregation, and surface properties following interaction with luminal factors present in the GI tract. The variables include physical forces, osmotic concentration, pH, digestive enzymes, other food, and endogenous biochemicals, and commensal microbes. Further research is required to fill remaining data gaps on the effects of these parameters on NM integrity, physicochemical properties, and GI absorption. Knowledge of the most influential luminal parameters will be essential when developing models of the GI tract to quantify the percent absorption of food-relevant engineered NMs for risk assessment. © 2015 The Authors. Source

Gill S.,Regulatory Toxicology Research Division | Hou Y.,Regulatory Toxicology Research Division | Li N.,Environmental Health Science and Research Bureau | Pulido O.,University of Ottawa | And 2 more authors.
Journal of Toxicology and Environmental Health - Part A: Current Issues

Polybrominated diphenyl ethers (PBDE) are a class of brominated flame retardants that are recognized as global environmental contaminants and a potential adverse health risk. The objective of this study was to evaluate the developmental impacts on rat Sprague-Dawley (SD) pups at postnatal day (PND) 11, 21, 50, 105, and 250 after perinatal exposure to a DE71 mixture. These PNDs corresponded to juveniles, young, and mature adults, respectively. The analysis included histopathological, transcriptional evaluation, and Western blots in both hippocampus and midbrain. There were no marked histopathological changes, but significant transcriptional alterations were observed at PND 21 and 250 in midbrain. These changes occurred in a number of the markers of the cholinergic system, including acetylcholinesterase, muscarinic and nicotinic receptors, and structural gene,s including those of neurofilaments, cell adhesion molecules including N-cadherin and CAMKII, and cytokines. The markers were upregulated at least twofold or greater at PND 21. These biomarkers were predominantly altered in males at low dose (0.3 mg/kg), whereas females were affected only at high concentration (30 mg/kg). At PND 250 both males and females showed downregulation of markers in both intermediate- and high-dose groups. Our results support the findings that in utero and lactational exposure to DE71 mixture leads to transcriptional alterations in midbrain of adult SD rats. © 2016 Crown. Source

Zhang Y.,Environmental Health Science and Research Bureau | Nguyen K.C.,Environmental Health Science and Research Bureau | Lefebvre D.E.,Regulatory Toxicology Research Division | Shwed P.S.,Environmental Health Science and Research Bureau | And 3 more authors.
Journal of Nanoparticle Research

The increasing use of zinc oxide nanoparticles (ZnO-NPs) has raised concerns about their potential hazards to human and environmental health. In this study, the characterization and cytotoxicity of two ZnO-NPs products (Z-COTE and Z-COTE HP1) were investigated. The zinc content of Z-COTE and Z-COTE HP1 was 82.5 ± 7.3 and 80.1 ± 3.5%, respectively. Both ZnO-NP samples contained subcytotoxic levels of iron and copper, and silicon was detected from the surface coating of Z-COTE HP1. All samples were highly agglomerated, and the primary particles appeared as variable polyhedral structures. There was no significant difference in size distribution or average diameter of Z-COTE (53 ± 23 nm) and Z-COTE HP1 (54 ± 26 nm). A dose-dependent cytotoxicity was observed 24 h after exposure to ZnO-NPs, and monocytes were more sensitive than lung epithelial cells or lymphoblasts in both human and mouse cells. There was a significant difference in cytotoxicity between nano- and fine-forms, but only at the threshold cytotoxic dose with cellular metabolism assays. Compared to uncoated ZnO-NPs, the surface coating with triethoxycaprylylsilane marginally attenuated cellular oxidative stress and protected cellular metabolic activity. These results demonstrate the importance of model cell type, dose selection, and cytotoxicity assessment methodology to accurately evaluate the potential toxicity of various nanoparticles in vitro. © The Author(s) 2014. Source

Hu Z.,Ohio State University | Brooks S.A.,University of North Carolina at Chapel Hill | Dormoy V.,University of Strasbourg | Dormoy V.,University of California at Irvine | And 28 more authors.

One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential. © The Author 2015. Published by Oxford University Press. Source

Casey S.C.,Stanford University | Vaccari M.,Public Health England | Al-Mulla F.,Kuwait University | Al-Temaimi R.,Kuwait University | And 31 more authors.

Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis. © The Author 2015. Published by Oxford University Press. Source

Discover hidden collaborations