Entity

Time filter

Source Type

Washington, DC, United States

Stubblefield J.J.,University of Texas Southwestern Medical Center | Terrien J.,University of Texas Southwestern Medical Center | Terrien J.,Regulations | Green C.B.,University of Texas Southwestern Medical Center
Trends in Endocrinology and Metabolism | Year: 2012

Many aspects of metabolism exhibit daily rhythmicity under the control of endogenous circadian clocks, and disruptions in circadian timing result in dysfunctions associated with the metabolic syndrome. Nocturnin (Noc) is a robustly rhythmic gene that encodes a deadenylase thought to be involved in the removal of polyA tails from mRNAs. Mice lacking the Noc gene display resistance to diet-induced obesity and hepatic steatosis, due in part to reduced lipid trafficking in the small intestine. In addition, Noc appears to play important roles in other tissues and has been implicated in lipid metabolism, adipogenesis, glucose homeostasis, inflammation and osteogenesis. Therefore, Noc is a potential key post-transcriptional mediator in the circadian control of many metabolic processes. © 2012 Elsevier Ltd. Source


Ugrumov M.V.,Regulations
Neurochemical Research | Year: 2010

The maintaining of homeostasis in the organism in response to a variable environment is provided by the highly hierarchic neuroendocrine-immune system. The crucial component of this system is the hypothalamus providing the endocrine regulation of key peripheral organs, and the adenohypophysis. In this case, neuron-derived signaling molecules (SM) are delivered to the blood vessels in hypothalamic "neurohaemal organs" lacking the blood-brain barrier (BBB), the posterior lobe of the pituitary and the median eminence. The release of SM to the blood vessels in most other brain regions is prohibited by BBB. According to the conventional concept, the development of the neuroendocrine system in ontogenesis begins with the "maturation" of peripheral endocrine glands which first are self-governed and then operate under the adenohypophysial control. Meantime, the brain maturation is under the control of SM secreted by endocrine glands of the developing organism and coming from the placenta and maternal organism. The hypothalamus is involved in the neuroendocrine regulation only after its full maturation that is followed by the conversion of the opened-looped neuroendocrine system to the closed-looped system as in adulthood. Neurons of the developing brain begin to secrete SM shortly after their origin and long before the establishment of specific interneuronal relations providing initially autocrine and paracrine morphogenetic influence on differentiating target neurons. Taking into account that the brain lacks BBB over this ontogenetic period, we hypothesized that it operates as the multipotent endocrine gland secreting SM to the general circulation and thereby providing the endocrine regulation of peripheral organs and the brain. The term "multipotent" means that the spectrum of the brain-derived circulating SM and their occupancy at the periphery in the developing organism should greatly exceed those in adulthood. In order to test this hypothesis, gonadotropin-releasing hormone (GnRH), dopamine (DA), and serotonin (5-hydroxytryptamine, 5-HT) were chosen as the markers of the presumptive endocrine function of the brain in ontogenesis. According to our data, the concentrations of GnRH, DA, and 5-HT in the rat general circulation during the perinatal period, i.e. before the establishment of BBB, was as high as those in the portal circulation in adulthood. The concentrations of circulating GnRH and DA dropped to almost undetectable level after the development of BBB suggesting their brain origin. This suggestion has been proven by showing an essential decrease of GnRH, DA, and 5-HT concentrations in general circulation of perinatal rats after microsurgical elimination of synthesizing neurons or the inhibition of specific syntheses in the brain before the establishment of BBB. GnRH, DA, and 5-HT apparently as dozens of other brain-derived SM appear to be capable of providing the endocrine influence on their peripheral targets like the adenohypophysis, gonads, kidney, heart, blood vessels, and the brain (endocrine autoregulation). Although the ontogenetic period of the brain operation as the multipotent endocrine gland is relatively short, the brain-derived SM are thought to be capable of providing long-lasting morphogenetic effects on peripheral targets and the brain. Thus, the developing brain operates as the multipotent endocrine gland from the onset of neurogenesis to the establishment of BBB providing the endocrine regulation of the developing organism. © 2010 Springer Science+Business Media, LLC. Source


Patients treated for differentiated thyroid cancer (DTC) are subjected to periodic surveillance that includes serum thyroglobulin measurements followed by radioiodine administrations for diagnostic and therapeutic purposes if necessary. Both procedures require adequately elevated blood levels of thyroid-stimulating hormone (TSH), which can be achieved by two approaches: parenteral administration of recombinant human TSH (rhTSH) or stopping thyroid hormone replacement until optimal levels of endogenous TSH are achieved. Although rhTSH administration does not require hormone withdrawal, it is not inexpensive and carries the risk of secondary effects. The latter option is simpler but induces a profound state of hypothyroidism, which results in physical and mental complaints that may interfere severely with the patient's activities of daily living. Rhodiola rosea is a popular plant in traditional medical systems in Eastern Europe and Asia with a reputation for stimulating the nervous system, decreasing depression, enhancing work performance, and eliminating fatigue, all features of clinical hypothyroidism. Investigators have also suggested additional benefits such as cardioprotection or even tumor growth inhibition. Here, we propose R. rosea as a viable alternative treatment for the symptoms of short-term hypothyroidism in patients with DTC who require hormone withdrawal. Source


Nonaka S.,Regulations
Methods in Enzymology | Year: 2013

The earliest left-right asymmetry in mouse development arises in 7.5 days, at the ventral surface of the embryonic node. The node cells possess monocilia beating in rotatory fashion to generate fluid flow from the right to the left (nodal flow). The direction of nodal flow will determine the side of expression of nodal, the responsible gene for "leftness." Nodal flow is visualized by combination of DIC (differential interference contrast) and microbeads in culture medium. Node cilia movement is visualized by DIC, a high-speed camera, and image processing. © 2013 Elsevier Inc. All rights reserved. Source


Aziz A.,Nutrition Research Division | Dumais L.,Regulations | Barber J.,Regulations
American Journal of Clinical Nutrition | Year: 2013

The glycemic index (GI) is a system that ranks foods according to the blood glucose-increasing potential of servings of foods that provide the same amount of available carbohydrate. The GI was originally developed as a tool for carbohydrate exchange in the dietary management of glycemia in persons with diabetes, and studies have generally supported modest benefits of low-GI diets in this population. Despite inconsistent results for the utility of the GI in the nondiabetic population, there is some interest in its universal application on food labels to assist consumers in making food choices that would help them meet their dietary goals. The objective of this review was to evaluate the usefulness of including the GI values of foods as part of the information on food labels in Canada. Health Canada's assessment identified 3 areas of concern with respect to GI labeling: 1) the GI measure has poor accuracy and precision for labeling purposes; 2) as a ratio, the GI does not vary in response to the amount of food consumed and the partial replacement of available carbohydrates with unavailable carbohydrates, whereas the glycemic response does; and 3) an unintended focus on the GI for food selection could lead to food choices that are inconsistent with national dietary guidelines. Hence, Health Canada's current opinion is that the inclusion of the GI value on the label of eligible food products would be misleading and would not add value to nutrition labeling and dietary guidelines in assisting consumers to make healthier food choices. © 2013 American Society for Nutrition. Source

Discover hidden collaborations