Entity

Time filter

Source Type


Patiroglu T.,Erciyes University | Akar H.H.,Erciyes University | Gilmour K.,Level 4 Camelia Botnar Laboratories | Ozdemir M.A.,Erciyes University | And 4 more authors.
Journal of Clinical Immunology | Year: 2014

Severe combined immunodeficiency (SCID) is a heterogeneous group of inherited defects involving the development of T- and/or B-lymphocytes. We report a female with atypical severe combined immunodeficiency caused by a novel homozygous mutation at cDNA position 2290 (c.2290C > T) in exon 2 of the RAG1 gene. The patient presented with bronchopneumonia, pyoderma gangrenosum (PG), pancytopenia and splenomegaly. She presented to us with pancytopenia and splenomegaly at the age of 11. Her condition was complicated by PG on left lower ankle at the age of 12. She experienced bronchopneumonia at the age of 15. She was diagnosed with RAG1 deficiency at the age of 16. Her immunological presentation included leucopenia and diminished number of B cells. © 2014, Springer Science+Business Media New York. Source


Usifo E.,University College London | Leigh S.E.A.,University College London | Whittall R.A.,University College London | Lench N.,Regional Molecular Genetics Laboratory | And 6 more authors.
Annals of Human Genetics | Year: 2012

Familial hypercholesterolemia (FH) is caused predominately by variants in the low-density lipoprotein receptor gene (LDLR). We report here an update of the UCL LDLR variant database to include variants reported in the literature and in-house between 2008 and 2010, transfer of the database to LOVDv.2.0 platform (https://grenada.lumc.nl/LOVD2/UCL-Heart/home.php?select_db=LDLR) and pathogenicity analysis. The database now contains over 1288 different variants reported in FH patients: 55% exonic substitutions, 22% exonic small rearrangements (<100 bp), 11% large rearrangements (>100 bp), 2% promoter variants, 10% intronic variants and 1 variant in the 3' untranslated sequence. The distribution and type of newly reported variants closely matches that of the 2008 database, and we have used these variants (n= 223) as a representative sample to assess the utility of standard open access software (PolyPhen, SIFT, refined SIFT, Neural Network Splice Site Prediction Tool, SplicePort and NetGene2) and additional analyses (Single Amino Acid Polymorphism database, analysis of conservation and structure and Mutation Taster) for pathogenicity prediction. In combination, these techniques have enabled us to assign with confidence pathogenic predictions to 8/8 in-frame small rearrangements and 8/9 missense substitutions with previously discordant results from PolyPhen and SIFT analysis. Overall, we conclude that 79% of the reported variants are likely to be disease causing. © 2012 The Authors Annals of Human Genetics © 2012 Blackwell Publishing Ltd/University College London. Source


Taylor A.,Regional Molecular Genetics Laboratory | Wang D.,Regional Molecular Genetics Laboratory | Patel K.,Regional Molecular Genetics Laboratory | Whittall R.,University College London | And 15 more authors.
Clinical Genetics | Year: 2010

Cascade testing using DNA-mutation information is now recommended in the UK for patients with familial hypercholesterolaemia (FH). We compared the detection rate and mutation spectrum in FH patients with a clinical diagnosis of definite (DFH) and possible (PFH) FH. Six hundred and thirty-five probands from six UK centres were tested for 18 low-density lipoprotein receptor gene (LDLR) mutations, APOB p.Arg3527Gln and PCSK9 p.Asp374Tyr using a commercial amplification refractory mutation system (ARMS) kit. Samples with no mutation detected were screened in all exons by single strand conformation polymorphism analysis (SSCP)/denaturing high performance liquid chromatography electrophoresis (dHPLC)/direct-sequencing, followed by multiplex ligation-dependent probe amplification (MLPA) to detect deletions and duplications in LDLR.The detection rate was significantly higher in the 190 DFH patients compared to the 394 PFH patients (56.3% and 28.4%, p > 0.00001). Fifty-one patients had inadequate information to determine PFH/DFH status, and in this group the detection rate was similar to the PFH group (25.5%, p = 0.63 vs PFH). Overall, 232 patients had detected mutations (107 different; 6.9% not previously reported). The ARMS kit detected 100 (44%) and the MLPA kit 11 (4.7%). Twenty-eight (12%) of the patients had the APOB p.Arg3527Gln and four (1.7%) had the PCSK9 p.Asp374Tyr mutation. Of the 296 relatives tested from 100 families, a mutation was identified in 56.1%. In 31 patients of Indian/Asian origin 10 mutations (two previously unreported) were identified. The utility of the ARMS kit was confirmed, but sequencing is still required in a comprehensive diagnostic service for FH. Even in subjects with a low clinical suspicion of FH, and in those of Indian origin, mutation testing has an acceptable detection rate. © 2010 John Wiley & Sons A/S. Source


Byrne S.,Childrens Neurosciences Center | Jansen L.,Kings College London | U-King-im J.-M.,Evelinas Children Hospital | Siddiqui A.,Evelinas Children Hospital | And 52 more authors.
Brain | Year: 2016

Vici syndrome is a progressive neurodevelopmental multisystem disorder due to recessive mutations in the key autophagy gene EPG5. We report genetic, clinical, neuroradiological, and neuropathological features of 50 children from 30 families, as well as the neuronal phenotype of EPG5 knock-down in Drosophila melanogaster. We identified 39 different EPG5 mutations, most of them truncating and predicted to result in reduced EPG5 protein. Most mutations were private, but three recurrent mutations (p.Met2242Cysfs∗5, p.Arg417∗, and p.Gln336Arg) indicated possible founder effects. Presentation was mainly neonatal, with marked hypotonia and feeding difficulties. In addition to the five principal features (callosal agenesis, cataracts, hypopigmentation, cardiomyopathy, and immune dysfunction), we identified three equally consistent features (profound developmental delay, progressive microcephaly, and failure to thrive). The manifestation of all eight of these features has a specificity of 97%, and a sensitivity of 89% for the presence of an EPG5 mutation and will allow informed decisions about genetic testing. Clinical progression was relentless and many children died in infancy. Survival analysis demonstrated a median survival time of 24 months (95% confidence interval 0-49 months), with only a 10th of patients surviving to 5 years of age. Survival outcomes were significantly better in patients with compound heterozygous mutations (P = 0.046), as well as in patients with the recurrent p.Gln336Arg mutation. Acquired microcephaly and regression of skills in long-term survivors suggests a neurodegenerative component superimposed on the principal neurodevelopmental defect. Two-thirds of patients had a severe seizure disorder, placing EPG5 within the rapidly expanding group of genes associated with early-onset epileptic encephalopathies. Consistent neuroradiological features comprised structural abnormalities, in particular callosal agenesis and pontine hypoplasia, delayed myelination and, less frequently, thalamic signal intensity changes evolving over time. Typical muscle biopsy features included fibre size variability, central/internal nuclei, abnormal glycogen storage, presence of autophagic vacuoles and secondary mitochondrial abnormalities. Nerve biopsy performed in one case revealed subtotal absence of myelinated axons. Post-mortem examinations in three patients confirmed neurodevelopmental and neurodegenerative features and multisystem involvement. Finally, downregulation of epg5 (CG14299) in Drosophila resulted in autophagic abnormalities and progressive neurodegeneration. We conclude that EPG5-related Vici syndrome defines a novel group of neurodevelopmental disorders that should be considered in patients with suggestive features in whom mitochondrial, glycogen, or lysosomal storage disorders have been excluded. Neurological progression over time indicates an intriguing link between neurodevelopment and neurodegeneration, also supported by neurodegenerative features in epg5-deficient Drosophila, and recent implication of other autophagy regulators in late-onset neurodegenerative disease. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. Source

Discover hidden collaborations