Edinburg, TX, United States
Edinburg, TX, United States

Time filter

Source Type

Cheng B.,Regional Academic Health Center Edinburg | Cheng B.,University of Texas Health Science Center at San Antonio | Martinez A.A.,University of Texas Health Science Center at San Antonio | Morado J.,University of Texas–Pan American | And 5 more authors.
Neurochemistry International | Year: 2013

Inhibition of proteasome activity and the resulting protein accumulation are now known to be important events in the development of many neurological disorders, including Alzheimer's and Parkinson's diseases. Abnormal or over expressed proteins cause endoplasmic reticulum and oxidative stress leading to cell death, thus, normal proteasome function is critical for their removal. We have shown previously, with cultured SH-SY5Y neuroblastoma cells, that proteasome inhibition by the drug epoxomicin results in accumulation of ubiquitinated proteins. This causes obligatory loading of the mitochondria with calcium (Ca2+), resulting in mitochondrial damage and cytochrome c release, followed by programmed cell death (PCD). In the present study, we demonstrate that all-trans-retinoic acid (RA) pretreatment of SH-SY5Y cells protects them from PCD death after subsequent epoxomicin treatment which causes proteasome inhibition. Even though ubiquitinated protein aggregates are present, there is no evidence to suggest that autophagy is involved. We conclude that protection by RA is likely by mechanisms that interfere with cell stress-PCD pathway that otherwise would result from protein accumulation after proteasome inhibition. In addition, although RA activates both the AKT and ERK phosphorylation signaling pathways, only pretreatment with LY294002, an inhibitor of PI3-kinase in the AKT pathway, removed the protective effect of RA from the cells. This finding implies that RA activation of the AKT signaling cascade takes precedence over its activation of ERK1/2 phosphorylation, and that this selective effect of RA is key to its protection of epoxomicin-treated cells. Taken together, these findings suggest that RA treatment of cultured neuroblastoma cells sets up conditions under which proteasome inhibition, and the resultant accumulation of ubiquitinated proteins, loses its ability to kill the cells and may likely play a therapeutic role in neurodegenerative diseases. © 2012 Elsevier Ltd. All rights reserved.


Macossay J.,University of Texas–Pan American | Sheikh F.A.,University of Texas–Pan American | Sheikh F.A.,Hallym University | Cantu T.,University of Texas–Pan American | And 10 more authors.
Applied Surface Science | Year: 2014

The present study discusses the design, development, and characterization of electrospun Tecoflex® EG 80A class of polyurethane nanofibers and the incorporation of multiwalled carbon nanotubes (MWCNTs) to these materials. Scanning electron microscopy results confirmed the presence of polymer nanofibers, which showed a decrease in fiber diameter at 0.5% wt. and 1% wt. MWCNTs loadings, while transmission electron microscopy showed evidence of the MWCNTs embedded within the polymer matrix. The Fourier transform infrared spectroscopy and Raman spectroscopy were used to elucidate the polymer-MWCNTs intermolecular interactions, indicating that the C-N and N-H bonds in polyurethanes are responsible for the interactions with MWCNTs. Furthermore, tensile testing indicated an increase in the Young's modulus of the nanofibers as the MWCNTs concentration was increased. Finally, NIH 3T3 fibroblasts were seeded on the obtained nanofibers, demonstrating cell biocompatibility and proliferation. Therefore, the results indicate the successful formation of polyurethane nanofibers with enhanced mechanical properties, and demonstrate their biocompatibility, suggesting their potential application in biomedical areas. © 2014 Elsevier B.V. All rights reserved.


Cheng B.,Regional Academic Health Center Edinburg | Cheng B.,University of Texas Health Science Center at San Antonio | Maffi S.K.,Regional Academic Health Center Edinburg | Maffi S.K.,University of Texas Health Science Center at San Antonio | And 5 more authors.
Molecular and Cellular Neuroscience | Year: 2011

The proteasome is an enzyme complex responsible for targeted intracellular proteolysis. Alterations in proteasome-mediated protein clearance have been implicated in the pathogenesis of aging, Alzheimer's disease (AD) and Parkinson's disease (PD). In such diseases, proteasome inhibition may contribute to formation of abnormal protein aggregates, which in turn activate intracellular unfolded protein responses that cause oxidative stress and apoptosis. In this study, we investigated the protective effect of Insulin-like Growth Factor-I (IGF-1) for neural SH-SY5Y cells treated with the proteasomal inhibitor, Epoxomicin. In SH-SY5Y cells, Epoxomicin treatment results in accumulation of intracellular ubiquitinated proteins and cytochrome c release from damaged mitochondria, leading to cell death, in Epoxomicin time- and dose-dependent manner. In cells treated with small amounts of IGF-1, the same dosages of Epoxomicin reduced both mitochondrial damage (cytochrome c release) and reduced caspase-3 activation and PARP cleavage, both of which are markers of apoptosis. Notably, however, IGF-1-treated SH-SY5Y cells still contained ubiquitinated protein aggregates. This result indicates that IGF-1 blocks the downstream apoptotic consequences of Epoxomicin treatment leading to decreased proteasome function. Clues as to the mechanism for this protective effect come from (a) increased AKT phosphorylation observed in IGF-1-protected cells, vs. cells exposed to Epoxomicin without IGF-1, and (b) reduction of IGF-1 protection by pretreatment of the cells with LY294002 (an inhibitor of PI3-kinase). Together these findings suggest that activation of PI3/AKT pathways by IGF-1 is involved in IGF-1 neuroprotection against apoptosis following proteasome inhibition. © 2011 Elsevier Inc.


PubMed | Regional Academic Health Center Edinburg
Type: Journal Article | Journal: Neurochemistry international | Year: 2012

Inhibition of proteasome activity and the resulting protein accumulation are now known to be important events in the development of many neurological disorders, including Alzheimers and Parkinsons diseases. Abnormal or over expressed proteins cause endoplasmic reticulum and oxidative stress leading to cell death, thus, normal proteasome function is critical for their removal. We have shown previously, with cultured SH-SY5Y neuroblastoma cells, that proteasome inhibition by the drug epoxomicin results in accumulation of ubiquitinated proteins. This causes obligatory loading of the mitochondria with calcium (Ca(2+)), resulting in mitochondrial damage and cytochrome c release, followed by programmed cell death (PCD). In the present study, we demonstrate that all-trans-retinoic acid (RA) pretreatment of SH-SY5Y cells protects them from PCD death after subsequent epoxomicin treatment which causes proteasome inhibition. Even though ubiquitinated protein aggregates are present, there is no evidence to suggest that autophagy is involved. We conclude that protection by RA is likely by mechanisms that interfere with cell stress-PCD pathway that otherwise would result from protein accumulation after proteasome inhibition. In addition, although RA activates both the AKT and ERK phosphorylation signaling pathways, only pretreatment with LY294002, an inhibitor of PI3-kinase in the AKT pathway, removed the protective effect of RA from the cells. This finding implies that RA activation of the AKT signaling cascade takes precedence over its activation of ERK1/2 phosphorylation, and that this selective effect of RA is key to its protection of epoxomicin-treated cells. Taken together, these findings suggest that RA treatment of cultured neuroblastoma cells sets up conditions under which proteasome inhibition, and the resultant accumulation of ubiquitinated proteins, loses its ability to kill the cells and may likely play a therapeutic role in neurodegenerative diseases.

Loading Regional Academic Health Center Edinburg collaborators
Loading Regional Academic Health Center Edinburg collaborators