Entity

Time filter

Source Type

Koganei, Japan

Morita K.,Hiroshima University | Doi K.,Hiroshima University | Kubo T.,Hiroshima University | Takeshita R.,Hiroshima University | And 3 more authors.
Acta Biomaterialia | Year: 2010

Inorganic polyphosphate (poly(P)) can promote binding between fibroblast growth factors and their receptors and enhance osteoblastic cell differentiation and calcification. This study evaluated the possibilities for poly(P) adsorbed onto interconnected porous calcium hydroxyapatite (IP-CHA) as a new bone regeneration material. Prepared 1%, 5%, 25% and 50% poly(P)/IP-CHA composites showed the elution peak of poly(P) between 15 and 20 min, respectively, with the highest value from 50% poly(P)/IP-CHA in vitro. Histologically, at 1 week of placement into the femur of rabbits, granulation tissue had penetrated into the pores in all composites and IP-CHA as a control. In contrast, at 2 weeks of placement, newly formed lamellar bone was found in all groups, although a higher amount of bone regeneration was obviously formed in the 25% and 50% poly(P)/IP-CHA with a significantly higher value of bone regeneration ratio of 50% poly(P)/IP-CHA. These results indicate that 25% and 50% poly(P)/IP-CHA composites may enhance initial bone regeneration. © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Source


Doi K.,Hiroshima University | Kubo T.,Hiroshima University | Takeshita R.,Hiroshima University | Kajihara S.,Hiroshima University | And 4 more authors.
Dental Materials Journal | Year: 2014

Inorganic polyphosphate (poly(P)) is recognized as a therapeutic agent that promotes fibroblast growth factor and enhances osteogenic differentiation, and in vivo, when adsorbed onto interconnected porous calcium hydroxyapatite (IP-CHA) enhances bone regeneration. The present study focused on the effect of poly(P) adsorbed onto IP-CHA granules (Poly(P)/IP-CHA) in guided bone regeneration (GBR). Dental implants were placed into the edentulous mandibular areas of five Beagle-Labrador hybrid dogs with screw expose on the buccal side, and then bone defects were filled Poly(P)/IP-CHA (test) or IP-CHA (control). After 12 weeks, histological evaluation and histomorphometrical analysis were performed. Newly-bone formation around exposed implant screw was clearly detected in the test-group. The ratio for regenerated bone height in the test group versus the control-group was 85.6±20.2 and 62.6±23.8, respectively, with no significant difference, while, that for bone implant contact was significantly higher (67.9±11.8 and 48.8±14.1, respectively). These findings indicate that Poly(P)/IP-CHA enhances bone regeneration in GBR. Source

Discover hidden collaborations