Time filter

Source Type

Canhos D.A.L.,Reference Center on Environmental Information | Sousa-Baena M.S.,Reference Center on Environmental Information | Souza S.,Reference Center on Environmental Information | Garcia L.C.,Reference Center on Environmental Information | And 3 more authors.
Biodiversity and Conservation | Year: 2014

Scientists from megadiverse countries, such as Brazil, face huge challenges in gathering and analyzing information about species richness and abundance. In Brazil, speciesLink is an e-infrastructure that offers free and open access to data from more than 300 biological and data collections. SpeciesLink's thematic network, INCT-Virtual Herbarium of Plants and Fungi and the List of Species of the Brazilian Flora, are used as primary data sources to develop Lacunas, an information system with a public web interface that generates detailed reports of the status of plant species occurrence data. Lacunas also integrates information about endemism, conservation status, and collecting efforts over time. Here we describe the motivation and the functionality of this system, showing how it can be useful in detecting under-sampled plant species and geographic areas. We show examples of how knowledge can be extracted from biodiversity primary data using Lacunas. For instance, Lacunas report revealed that 111 angiosperm species (10.3 %), currently considered Data Deficient (DD) in the Official List of Threatened Brazilian Flora, have their distribution well characterized. In addition, the situation of Attalea funifera, a native palm classified as DD, was analyzed in detail, together with other use cases. Information presented in Lacunas reports can thus be used by scientists and policy-makers to help evaluate the status of species occurrence data and prioritize digitization and collecting efforts, as well as some features concerning its conservation status. As Lacunas offers a public online interface, it may also become a valuable tool for helping decision-making processes to become more dynamic and transparent. © 2013 Springer Science+Business Media Dordrecht.

Pezzini F.F.,Federal University of Minas Gerais | Pezzini F.F.,Reference Center on Environmental Information | Ranieri B.D.,Federal University of Minas Gerais | Ranieri B.D.,University of British Columbia | And 5 more authors.
Plant Biosystems | Year: 2014

The applicability of succession models from temperate and tropical wet forests to threatened seasonally dry tropical forests (SDTFs) is questioned. Plant phenology affects ecosystem functions and changes along forest regeneration gradient. To investigate the recovery of ecological functions after disturbances in a SDTF, we recorded the vegetative and reproductive phenologies for trees (DBH >5 cm) for 17 months in southeast Brazil in three successional stages: early (10–15 years after clearing), intermediate (25–30) and late (>50). The vegetative phenology of the 523 individuals was strongly seasonal, with 3% of individuals presenting green leaves in a deciduous dry season. Besides structural and floristic differences, phenological trends were similar between the later stages. Reproduction occurred with higher intensities in the early stage and in the advanced stages only in the dry season, providing key resources to local fauna. The studied SDTF is resilient to ecological functions, rapidly recovering functional processes. The integration of structural and functional knowledge of succession of STDFs may lead to better management of its secondary remnants. Our study suggests that classical forest succession theory developed for other ecosystems may not fully reflect the pattern of SDTF succession, an ecosystem that originally covered 42% of the earth's tropical and subtropical landmass. © 2014, © 2014 Società Botanica Italiana.

Loading Reference Center on Environmental Information collaborators
Loading Reference Center on Environmental Information collaborators