Entity

Time filter

Source Type

Chandigarh, India

Sravana Kumar M.,RDC SASE | Shekhar M.S.,RDC SASE | Rama Krishna S.S.V.S.,Andhra University | Bhutiyani M.R.,RDC SASE | Ganju A.,RDC SASE
Natural Hazards | Year: 2012

Localized deep cumulus convective clouds have a capability of giving enormous amount of rainfall over a limited horizontal area, within a short span of time. Such types of extreme rainfall events are most common over the high elevated areas of Northern India during the Southwest monsoon season which causes widespread damage to the property and lives. Therefore, it is necessary to predict such extreme events accurately to avoid damage associated with them. The numerical mesoscale model Weather Research and Forecasting has been used to simulate the cloud burst event of Leh on August 05, 2010, so as to capture the main characteristics of the various parameters associated with this localized mesoscale phenomenon. The model has been integrated with four nested domains keeping Leh and its adjoining area as center. Two cloud microphysics parameterization schemes namely WSM3 and WSM6 have been used for the sensitivity experiments and results have been analyzed to examine the performance of both the schemes in capturing such extreme localized heavy rainfall events. Results show that the WSM6 microphysics was able to simulate the precipitation near to the observation. WSM3 microphysics simulated the location of the circulation near to the observation. In addition, the results also show that the maximum magnitudes of meridional and vertical wind as simulated with WSM3 microphysics are 12 and 4 m/s, respectively. © 2012 Springer Science+Business Media B.V.

Discover hidden collaborations