RAS Topchiev Institute of Petrochemical Synthesis

Moscow, Russia

RAS Topchiev Institute of Petrochemical Synthesis

Moscow, Russia

Time filter

Source Type

Patent
RAS Topchiev Institute of Petrochemical Synthesis and Corium International | Date: 2016-11-23

A composition is provided, wherein the composition comprises a water-swellable, water insoluble polymer, a blend of a hydrophilic polymer and a complementary oligomer capable of hydrogen bonding to the hydrophilic polymer, and a whitening agent, preferably a peroxide. The composition finds utility as a tooth whitening composition and is applied to the teeth in need of whitening, and then removed when the degree of whitening has been achieved. In certain embodiments, the composition is translucent. Methods for preparing and using the compositions are also disclosed.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ENERGY.2011.5&6.2-1 | Award Amount: 13.56M | Year: 2012

OCTAVIUS aims to demonstrate integrated concepts for zero emission power plants covering all the components needed for power generation as well as CO2 capture and compression. Operability and flexibility of first generation post combustion processes are demonstrated by TNO, EnBW and ENEL pilot plants in order to prepare full scale demo projects such as the ROAD and Porto Tolle projects that will start in 2015. OCTAVIUS will establish detailed guidelines with relevant data on emissions, HSE, and other operability, flexibility and cost aspects. In addition, OCTAVIUS includes the demonstration of the DMX process on the ENEL pilot plant in Brindisi. This second generation capture process can enable a substantial reduction of the energy penalty and operational cost. The demonstration is an essential step before the first full scale demonstration envisaged to be launched at the end of OCTAVIUS. Application to coal power stations but also NGCC will be considered. OCTAVIUS builds forward on previous FP6 and FP7 CCS projects such as CASTOR and CESAR. The main coordinating research institutes and industrial partners of these projects also take part in OCTAVIUS. Results of the clean coal research are provided by end-users, engineering companies and technology vendors partnering in OCTAVIUS. Each of the demo sub-projects (SP2 and SP3) is led by a power company. The demo sub-projects are supported by work packages in SP1 dealing with RTD support activities and common issues. Two work packages in SP0 are dedicated to management and dissemination actions respectively. The latter work package includes contacting stakeholders outside OCTAVIUS. OCTAVIUS gathers the leading organisations within the field of CCS and clean coal, covering the whole value chain from research institutes to end-users. The consortium consists of 5 research organisations, 2 universities, 1 SME, 1 engineering company, 2 equipment suppliers, and 6 power generators.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ENERGY.2013.5.1.2 | Award Amount: 7.73M | Year: 2014

This proposal aims to develop high-potential novel and environmentally benign technologies and processes for post-combustion CO2 capture leading to real breakthroughs. The proposal includes all main separation technologies for post-combustion CO2 capture; absorption, adsorption and membranes. Enzyme based systems, bio-mimicking systems and other novel forms of CO2 binding will be explored. For each technology we will focus on chosen set of promising concepts (four for absorption, two for adsorption and two for membranes). We aim to achieve 25% reduction in efficiency penalty compared to a demonstrated state-of-the-art capture process in the EU project CESAR and deliver proof-of-concepts for each technology. The various technologies and associated process concepts will be assessed using a novel methodology for comparing new and emerging technologies, for which limited data are available and the maturity level varies substantially. Based on the relative performance using various performance indicators, a selection of two breakthrough technologies will be made. Those two technologies will be further studied in order to do a more thorough benchmarking against demonstrated state-of-the-art technologies. A technological roadmap, based on a thorough gap analysis, for industrial demonstration of the two technologies will finally be established. HiPerCap involves 15 partners, from both the public and private sectors (research, academia, and industry), from 6 different EU Member States and Associated States, and three International Cooperation Partner Countries (Russia, Canada, and Australia). The HiPerCap consortium includes all essential stakeholders in the technology supply chain for CCS: power companies, RTD providers, suppliers, manufacturers (of power plants, industrial systems, equipment, and materials), and engineering companies.


Patent
RAS Topchiev Institute of Petrochemical Synthesis and Corium International | Date: 2014-02-03

A rapidly dissolving film is provided for delivery of an active agent to a moist body surface, e.g., mucosal tissue. The film comprises a film-forming binder, a rapidly dissolving polymeric material, and an active agent.


Patent
RAS Topchiev Institute of Petrochemical Synthesis and Corium International | Date: 2015-06-22

A composition is provided, wherein the composition comprises a water-swellable, water-insoluble polymer, a blend of a hydrophilic polymer with a complementary oligomer capable of hydrogen or electrostatic bonding to the hydrophilic polymer. The composition also includes a backing member. Active ingredients, such as a whitening agent, may be included. The composition finds utility as an oral dressing, for example, a tooth whitening composition that is applied to the teeth in need of whitening. The composition can be designed to be removed when the degree of whitening has been achieved or left in place and allowed to erode entirely. In certain embodiments, the composition is translucent. Methods for preparing and using the compositions are also disclosed.


Patent
RAS Topchiev Institute of Petrochemical Synthesis and Corium International | Date: 2014-04-29

Hydrogel compositions are provided (a) that have a continuous hydrophobic phase and a discontinuous hydrophilic phase, (b) that have a discontinuous hydrophilic phase and a continuous hydrophilic phase, or (c) that are entirely composed of a continuous hydrophilic phase. The hydrophobic phase, if present, is composed of a hydrophobic polymer, particularly a hydrophobic pressure-sensitive adhesive (PSA), a plasticizing elastomer, a tackifying resin, and an optional antioxidant. The discontinuous hydrophilic phase, if present, is composed of a crosslinked hydrophilic polymer, particularly a crosslinked cellulosic polymer such as crosslinked sodium carboxymethylcellulose. For those hydrogel compositions containing a continuous hydrophilic phase, the components of the phase include a cellulose ester composition or an acrylate polymer or copolymer, and a blend of a hydrophilic polymer and a complementary oligomer capable of hydrogen bonding thereto. Films prepared from hydrogel compositions containing or entirely composed of the aforementioned continuous hydrophilic phase can be made translucent, and may be prepared using either melt extrusion or solution casting. A preferred use of the hydrogel compositions is in wound dressings, although numerous other uses are possible as well.


Patent
RAS Topchiev Institute of Petrochemical Synthesis and Corium International | Date: 2014-09-23

A composition is provided, wherein the composition comprises a water-swellable, water-insoluble polymer, a blend of a hydrophilic polymer and a complementary oligomer capable of hydrogen bonding to the hydrophilic polymer, and a whitening agent, preferably a peroxide. The composition finds utility as a tooth whitening composition and is applied to the teeth in need of whitening, and then removed when the degree of whitening has been achieved. In certain embodiments, the composition is translucent. Methods for preparing and using the compositions are also disclosed.


Patent
RAS Topchiev Institute of Petrochemical Synthesis and Corium International | Date: 2014-06-02

A composition is provided, wherein the composition comprises a water-swellable, water-insoluble polymer, a blend of a hydrophilic polymer with a complementary oligomer capable of hydrogen or electrostatic bonding to the hydrophilic polymer. The composition also includes a backing member. Active ingredients, such as a whitening agent, may be included. The composition finds utility as an oral dressing, for example, a tooth whitening composition that is applied to the teeth in need of whitening. The composition can be designed to be removed when the degree of whitening has been achieved or left in place and allowed to erode entirely. In certain embodiments, the composition is translucent. Methods for preparing and using the compositions are also disclosed.


Ivanova I.I.,RAS Topchiev Institute of Petrochemical Synthesis | Knyazeva E.E.,RAS Topchiev Institute of Petrochemical Synthesis
Chemical Society Reviews | Year: 2013

The review covers the recent developments in the field of novel micro-mesoporous materials obtained by zeolite recrystallization. The materials are classified into three distinctly different groups depending on the degree of recrystallization: (i) coated mesoporous zeolites (RZEO-1); (ii) micro-mesoporous nanocomposites (RZEO-2); and (iii) mesoporous materials with zeolitic fragments in the walls (RZEO-3). The first part of the review is focused on the analysis of the synthetic strategies leading to different types of recrystallized materials. In the second part, a comprehensive view on their structure, texture and porosity in connection with acidic and diffusion properties is given. The last part is devoted to the catalytic applications of recrystallized materials. The advantages and disadvantages with respect to pure micro- and mesoporous molecular sieves and other hierarchical zeolites are critically analyzed and the future opportunities and perspectives are discussed. © The Royal Society of Chemistry 2013.


Yampolskii Y.,RAS Topchiev Institute of Petrochemical Synthesis
Macromolecules | Year: 2012

This short Perspective conveys to the general reader of Macromolecules basic approaches of materials science of polymeric membranes for gas and vapor separation. The relations between the polymer structure and transport properties of rubbery and glassy membrane materials are considered. On the basis of acquired information, several methods for quantitative prediction of permeability were developed, and their comparative analysis is given in the Perspective. The past decade was marked by the appearance of a number of novel interesting membrane materials, which will be briefly described in the text. In conclusion, novel approaches for achieving highly permeable and permselective materials (e.g., mixed matrix membranes) will be considered as well as several relevant but not solved so far problems of membrane gas separation. © 2012 American Chemical Society.

Loading RAS Topchiev Institute of Petrochemical Synthesis collaborators
Loading RAS Topchiev Institute of Petrochemical Synthesis collaborators