Time filter

Source Type

Nizhny Novgorod, Russia

Turlapov A.V.,RAS Institute of Applied Physics
JETP Letters

A rapidly developing field, experimental physics of ultracold gases of Fermi atoms, is briefly reviewed. The contribution of this field to fundamental physics is shown along with connection to other fields which explore systems of Fermi particles. The basic parameters of atomic Fermi gas are described together with its unique properties and advantages and disadvantages in comparison to other Fermi systems. The prospects of this field and its short history are considered. Research groups working in this field are listed. © 2012 Pleiades Publishing, Ltd. Source

Savilov A.V.,RAS Institute of Applied Physics
Applied Physics Letters

Theory of a backward-wave electron oscillator, which operates in the nonstationary regime of the super-radiation of short powerful rf pulses, is developed. In some regimes of this auto-oscillator, complicated two-peak rf pulses are produced. It is shown that such rf pulses can be easily compressed into single-peak pulses. This provides a significant enhancement of the peak rf power. © 2010 American Institute of Physics. Source

Yao X.,Texas A&M University | Tokman M.,RAS Institute of Applied Physics | Belyanin A.,Texas A&M University
Physical Review Letters

Surface plasmons in graphene may provide an attractive alternative to noble-metal plasmons due to their tighter confinement, peculiar dispersion, and longer propagation distance. We present theoretical studies of the nonlinear difference frequency generation (DFG) of terahertz surface plasmon modes supported by two-dimensional layers of massless Dirac electrons, which includes graphene and surface states in topological insulators. Our results demonstrate strong enhancement of the DFG efficiency near the plasmon resonance and the feasibility of phase-matched nonlinear generation of plasmons over a broad range of frequencies. © 2014 American Physical Society. Source

Dolin L.S.,RAS Institute of Applied Physics
Applied Optics

We develop a method to evaluate the modulation transfer function (MTF) of a water layer from the characteristics of lidar signal backscattered by water volume. We propose several designs of a lidar system for remote measurement of the MTF and the procedure to determine optical properties of water using the measured MTF. We discuss a laser system for sea-bottom imaging that accounts for the influence of water slab on the image structure and allows for correction of image distortions caused by light scattering in water. © 2013 Optical Society of America. Source

INRS - Institute National de la Recherche Scientifique, Ecole Polytechnique Paris Technology and RAS Institute of Applied Physics | Date: 2014-01-06

A system comprising a laser emitting an ultrashort pulse beam; and a dielectric bulk medium having a refractive index depending on intensity, the bulk medium broadening the laser beam homogeneously versus transversal spatial coordinates, and a method for compressing high energy femtosecond laser pulses, comprising propagating the laser beam inside a dielectric bulk medium having a refractive index depending on the beam intensity, the bulk medium broadening the laser beam homogeneously versus transversal spatial coordinates; and compressing a resulting broadened spectrum.

Discover hidden collaborations