Time filter

Source Type

St. Louis, MO, United States

Conlon J.M.,United Arab Emirates University | Mechkarska M.,United Arab Emirates University | Radosavljevic G.,University of Kragujevac | Attoub S.,United Arab Emirates University | And 3 more authors.
Peptides | Year: 2014

Peptidomic analysis of norepinephrine-stimulated skin secretions of the Orinoco lime tree frog Sphaenorhynchus lacteus (Hylidae, Hylinae) revealed the presence of three structurally related host-defense peptides with limited sequence similarity to frenatin 2 from Litoria infrafrenata (Hylidae, Pelodryadinae) and frenatin 2D from Discoglossus sardus (Alytidae). Frenatin 2.1S (GLVGTLLGHIGKAILG.NH and frenatin 2.2S (GLVGTLLGHIGKAILS.NH are C-terminally α-amidated but frenatin 2.3S (GLVGTLLGHIGKAILG) is not. Frenatin 2.1S and 2.2S show potent bactericidal activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MIC &16 μM) but are less active against a range of Gram-negative bacteria. Frenatin 2.1S (LC;bsubesub& = 80 ;plusmn& 6 μM) and 2.2S (LC;bsubesub& = 75 ;plusmn& 5 μM) are cytotoxic against non-small cell lung adenocarcinoma A549 cells but are less hemolytic against human erythrocytes (LC;bsubesub& = 167 ;plusmn& 8 μM for frenatin 2.1S and 169 ;plusmn& 7 μM for 2.2S). Weak antimicrobial and cytotoxic potencies of frenatin 2.3S demonstrate the importance of C-terminal α-amidation for activity. Frenatin 2.1S and 2.2S significantly (P ;lt& 0.05) increased production of proinflammatory cytokines IL-1β and IL-23 by lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages and frenatin 2.1S also enhanced production of TNF-α. Effects on IL-6 production were not significant. Frenatin 2.2S significantly downregulated production of the anti-inflammatory cytokine IL-10 by LPS-stimulated cells. The data support speculation that frenatins act on skin macrophages to produce a cytokine-mediated stimulation of the adaptive immune system in response to invasion by microorganisms. They may represent a template for the design of peptides with therapeutic applications as immunostimulatory agents. © 2014 Elsevier Inc. Source

Landolfi J.A.,Loyola University | Miller M.,Rare Species Conservatory Foundation | Maddox C.,Urbana University | Zuckermann F.,Urbana University | And 2 more authors.
Tuberculosis | Year: 2014

Tuberculosis is an important health concern for Asian elephant (Elephas maximus) populations worldwide, however, mechanisms underlying susceptibility to Mycobacterium tuberculosis are unknown. Proliferative responses assessed via brominated uridine incorporation and cytokine expression measured by real-time RT-PCR were evaluated in peripheral blood mononuclear cell (PBMC) cultures from 8 tuberculosis negative and 8 positive Asian elephants. Cultures were stimulated with Mycobacterium bovis purified protein derivative (PPD-B), M. tuberculosis culture filtrate protein (CFP)-10, and Mycobacterium avium PPD (PPD-A). Following stimulation with PPD-B, proliferation was higher (α = 0.005) in positive samples; no significant differences were detected following CFP-10 or PPD-A stimulation. Tumor necrosis factor (TNF)-α, interleukin (IL)-12, and interferon (IFN)-γ expression was greater in samples from positive elephants following stimulation with PPD-B (α = 0.025) and CFP-10 (α = 0.025 TNF-α and IL-12; α = 0.005 IFN-γ). Stimulation with PPD-A also produced enhanced IL-12 expression in positive samples (α = 0.025). Findings suggested that differences in immune cell function exist between tuberculosis positive and negative elephants. Proliferative responses and expression of TNF-α, IL-12, and IFN-γ in response to stimulation with PPD-B and CFP-10 differ between tuberculosis positive and negative elephants, suggesting these parameters may be important to tuberculosis immunopathogenesis in this species. © 2014 The Authors. Published by Elsevier Ltd. Source

Michael Conlon J.,United Arab Emirates University | Mechkarska M.,United Arab Emirates University | King J.D.,Rare Species Conservatory Foundation
General and Comparative Endocrinology | Year: 2012

African clawed frogs of the Xenopodinae (Xenopus+. Silurana) constitute a well-defined system in which to study the evolutionary trajectory of duplicated genes and are a source of antimicrobial peptides with therapeutic potential. Allopolyploidization events within the Xenopodinae have given rise to tetraploid, octoploid, and dodecaploid species. The primary structures and distributions of host-defense peptides from the tetraploid frogs Xenopus borealis, Xenopus clivii, Xenopus laevis, Xenopus muelleri, " X. muelleri West" , and Xenopus petersii may be compared with those from the octoploid frogs Xenopus amieti and X. andrei. Similarly, components in skin secretions from the diploid frog Silurana tropicalis may be compared with those from the tetraploid frog Silurana paratropicalis. All Xenopus antimicrobial peptides may be classified in the magainin, peptide glycine-leucine-amide (PGLa), caerulein-precursor fragment (CPF), and xenopsin-precursor fragment (XPF) families. However, the numbers of paralogs from the octoploid frogs were not significantly greater than the corresponding numbers from the tetraploid frogs. Magainins were not identified in skin secretions of Silurana frogs and the multiplicity of the PGLa, CPF, and XPF peptides from S. paratropicalis was not greater than that of S. tropicalis. The data indicate, therefore, that nonfunctionalization (gene silencing) has been the most common fate of antimicrobial peptide genes following polyploidization. While some duplicated gene products retain high antimicrobial potency (subfunctionalization), the very low activity of others suggests that they may be evolving towards a new biological role (neofunctionalization). CPF-AM1 and PGLa-AM1 from X. amieti show potential for development into anti-infective agents for use against antibiotic-resistant Gram-negative bacteria. © 2011 Elsevier Inc. Source

Mechkarska M.,United Arab Emirates University | Ahmed E.,United Arab Emirates University | Coquet L.,University of Rouen | Coquet L.,CNRS Polymers, Biopolymer and Surfaces Laboratory | And 6 more authors.
Peptides | Year: 2011

Mueller's clawed frog Xenopus muelleri (Peters 1844) occupies two non-contiguous ranges in east and west Africa. The phylogenetic relationship between the two populations is unclear and it has been proposed that the western population represents a separate species. Peptidomic analysis of norepinephrine-stimulated skin secretions from X. muelleri from the eastern range resulted in the identification of five antimicrobial peptides structurally related to the magainins (magainin-M1 and -M2), xenopsin-precursor fragments (XPF-M1) and caerulein-precursor fragments (CPF-M1 and -M2) previously found in skin secretions of other Xenopus species. A cyclic peptide (WCPPMIPLCSRF.NH 2) containing the RFamide motif was also isolated that shows limited structural similarity to the tigerinins, previously identified only in frogs of the Dicroglossidae family. The components identified in skin secretions from X. muelleri from the western range comprised one magainin (magainin-MW1), one XPF peptide (XPF-MW1), two peptides glycine-leucine amide (PGLa-MW1 and -MW2), and three CPF peptides (CPF-MW1, -MW2 and -MW3). Comparison of the primary structures of these peptides suggest that western population of X. muelleri is more closely related to X. borealis than to X. muelleri consistent with its proposed designation as a separate species. The CPF peptides showed potent, broad-spectrum activity against reference strains of bacteria (MIC 3-25 μM), but were hemolytic against human erythrocytes. © 2011 Elsevier Inc. All rights reserved. Source

Conlon J.M.,United Arab Emirates University | Coquet L.,University of Rouen | Leprince J.,University of Rouen | Jouenne T.,University of Rouen | And 2 more authors.
Comparative Biochemistry and Physiology - C Toxicology and Pharmacology | Year: 2010

The phylogenetic relationship between the relict leopard frog Lithobates (Rana) onca (Cope, 1875) and the lowland leopard frog Lithobates (Rana) yavapaiensis (Platz and Frost, 1984) is unclear. Chromatographic analysis of norepinephrine-stimulated skin secretions from L. onca led to the identification of six peptides with antimicrobial activity. Determination of their primary structures indicated that four of the peptides were identical to brevinin-1Ya, brevinin-1Yb, brevinin-1Yc and ranatuerin-2Ya previously isolated from skin secretions of L. yavapaiensis. However, a peptide belonging to the temporin family (temporin-ONa: FLPTFGKILSGLF.NH2) and an atypical member of the ranatuerin-2 family containing a C-terminal cyclic heptapeptide domain (ranatuerin-2ONa: GLMDTVKNAAKNLAGQMLDKLKCKITGSC) were isolated from the L. onca secretions but were not present in the L. yavapaiensis secretions. Ranatuerin-2ONa inhibited the growth of Escherichia coli (MIC = 50 μM) and Candida albicans (MIC = 100 μM ) and showed hemolytic activity (LC50 = 90 μM) but was inactive against Staphylococcus aureus. The data indicate a close phylogenetic relationship between L. onca and L. yavapaiensis but suggest that they are not conspecific species. © 2009 Elsevier Inc. All rights reserved. Source

Discover hidden collaborations