Entity

Time filter

Source Type

Jersey

Randgold Resources is a gold mining business operating mainly in Mali. Headquartered in Jersey, Channel Islands, it is listed on the London and the NASDAQ stock exchanges. Its London-traded shares are a constituent of the FTSE 100 Index and its NASDAQ-traded shares are a constituent of the NASDAQ-100 index. Wikipedia.


Herbert S.,Randgold Resources | Woldai T.,University of Twente | Woldai T.,University of Witwatersrand | Carranza E.J.M.,James Cook University | van Ruitenbeek F.J.A.,University of Twente
Journal of African Earth Sciences | Year: 2014

Integration of enhanced regional geo-datasets has facilitated new geological interpretation and modelling of prospectivity for orogenic gold in southwestern Uganda. The geo-datasets include historical geological maps, geological field data, digital terrain models, Landsat TM data and airborne geophysical data. The study area, bordered by the western branch of the East African Rift, covers a range of different aged terranes including the Archaean basement gneisses, Palaeoproterozoic volcano-sedimentary Buganda Toro Belt, Mesoproterozoic clastic sedimentary Karagwe Ankolean Belt and several outliers of undeformed Neoproterozoic sediments. The mineral systems approach to practical exploration targeting requires a framework to link conceptual models of mineralisation with available data. A conceptual model requires good understanding of key processes and their timing within the geodynamic history of an area. The challenge is that processes cannot be mapped, only their results or effects. In this study, a district-scale (1:100,000) investigation is considered appropriate given the scarcity of geological information and the absence of world-renowned gold deposits in southwestern Uganda. At this scale of orogenic gold mineral systems understanding, evidence for the source of gold, active pathways and the physical traps are considered critical. Following the mineral system approach, these processes critical to orogenic gold systems are translated into district-scale mappable proxies using available regional-scale datasets. Tectono-stratigraphic domains, mantle indicators and gold occurrences represent the "source of gold" as a critical process. Zones of hydrothermal alteration were extracted from radiometric data, structures involved in the orogenies and terrane contacts were extracted to represent the active pathway as a critical process and finally the physical throttle is represented by rheological contrasts and geological complexity. Then, the knowledge-driven multi-class index overlay method was used to integrate predictor layers representing those processes in order to model orogenic gold prospectivity into a single map. Weighting of the predictor layers, prior to integration, occurs at the level of the critical process and takes into account the relative importance of the critical process mineralisation, the representativeness of a proxy and the accuracy of the proxy. The resultant prospectivity model shows that 83% of all gold occurrences are delineated within predicted prospective areas covering 30% of the study area. Eight sub-areas, covering 2500km2, have been recommended for follow-up exploration. © 2014. Source


Mcfarlane C.R.M.,University of New Brunswick | Mavrogenes J.,Australian National University | Lentz D.,University of New Brunswick | King K.,Randgold Resources | And 2 more authors.
Economic Geology | Year: 2011

The ∼8 Moz Morila gold mine, hosted within Paleoproterozoic Birimian volcano-sedimentary rocks of southeast Mali, is spatially and temporally associated with prolonged (2098-2065 Ma) arc magmatism during the late stages of the Eburnean orogeny. Visible gold at Morila is associated with variably deformed polymineralic veins containing native bismuth, maldonite, aurostibite, rare tellurobismuthite, and löllingite, suggesting a proximal intrusion-related source for this period of gold mineralization. This early formed mineralization is contained within a zone of hornblende hornfels contact metamorphism and is spatially associated with syn- to post-D 2emplacement of 2098 to 2091 Ma quartz-diorite, granodiorite, and leucogranite magmas. The occurrence of immiscible Au-Sb-Bi-Te blebs within sills or dikes associated with gold mineralization at the Morila deposit explicitly links granitic magmatism with gold mineralization This early intrusion-related gold system was overprinted by a younger post-D2 stage of hydrothermal alteration recorded by sulfidation along a north-northeast-trending zone characterized by disseminated idioblastic arsenopyrite porphyroblasts that contain polygonal gold blebs. Silicate alteration during this stage includes albitization of plagioclase and the growth of randomly distributed biotite and titanite, the latter typically surrounding ilmenite. Uranium-Pb dating of this generation of titanite yields a preliminary age for late-stage sulfidation of 2074 ± 14 Ma, which brackets mineralization to the interval 2098 ± 4 to 2074 ± 14 Ma. The geochemistry and isotope systematics of syn- to post-tectonic intermediate intrusions at the Morila deposit point to their derivation in a suprasubduction zone setting and emplacement into tectonically thickened crust. Based on these observations, it is suggested that the Morila gold deposit formed during late-stage collisional orogenesis involving the accretion of juvenile volcanic arc terranes against the Archean Man (Liberian) cratonic nucleus. This setting is analogous to younger Phanerozoic active continental margin settings which host the best-described examples of intrusion-related gold systems. © 2011 by Economic Geology. Source


Lambert-Smith J.S.,Kingston University | Lawrence D.M.,Randgold Resources | Muller W.,Royal Holloway, University of London | Treloar P.J.,Kingston University
Precambrian Research | Year: 2016

New U-Pb zircon ages and geochemistry from the eastern Kédougou-Kéniéba Inlier are presented and integrated with published data to generate a revised tectonic framework for the westernmost Birimian terranes. The Falémé Volcanic Belt and Kofi Series are highly prospective, hosting several multi-million ounce gold deposits and a significant iron ore resource, but remain under-researched. It is therefore important to constrain the fundamental geological setting.The igneous rocks of the eastern Kédougou-Kéniéba Inlier are dominantly of high-K calc-alkaline affinity, with fractionated REE patterns and negative Nb-Ta anomalies. The plutonic rocks in the Falémé Belt are dioritic to granodioritic in composition, with moderately fractionated REE patterns and metaluminous A/CNK signatures. Felsic, peraluminous granite stocks, dykes and plutons with fractionated REE patterns and negative Eu, Ti and P anomalies intruded both the Falémé Belt and Kofi Series. Albitisation masks the affinity of some units, although use of the Th-Co diagram shows that prior to albitisation, all igneous units belonged to the high-K calc-alkaline series. New U-Pb age data for the Boboti and Balangouma plutons indicate crystallisation at 2088.5 ± 8.5 Ma and at 2112 ± 13 Ma, respectively. Inherited zircons in the Boboti pluton indicate magmatic activity in the Falémé Belt at 2218 ± 83 Ma coincided with the oldest dated units in the Mako Belt to the West.Systematic changes in Dy/Yb, Sm/La, Nb/Zr, Rb concentration, Eu-anomaly and eNdt over ~200 Ma reveal that the tectonic setting in the KKI evolved from a volcanic island arc environment to an active continental margin. Crustal thickening, as a result of a shift to collisional tectonic setting, combined with magmatic differentiation, led to the generation of peraluminous, granitic melts with a significant crustal component. A small suite of more basic intrusive and extrusive rocks on the eastern margin of the Dialé-Daléma basin are highly metaluminous and display limited LILE enrichment, with normalised HREE values close to unity. The Daléma igneous rocks may have formed in an extensional back arc, related to the arc system. © 2015 Elsevier B.V. Source


Herbert S.,Randgold Resources | Woldai T.,University of Witwatersrand | Carranza E.J.M.,James Cook University | van Ruitenbeek F.J.A.,University of Twente
Journal of African Earth Sciences | Year: 2014

Integration of enhanced regional geo-datasets has facilitated new geological interpretation and modelling of prospectivity for orogenic gold in southwestern Uganda. The geo-datasets include historical geological maps, geological field data, digital terrain models, Landsat TM data and airborne geophysical data. The study area, bordered by the western branch of the East African Rift, covers a range of different aged terranes including the Archaean basement gneisses, Palaeoproterozoic volcano-sedimentary Buganda Toro Belt, Mesoproterozoic clastic sedimentary Karagwe Ankolean Belt and several outliers of undeformed Neoproterozoic sediments. The mineral systems approach to practical exploration targeting requires a framework to link conceptual models of mineralisation with available data. A conceptual model requires good understanding of key processes and their timing within the geodynamic history of an area. The challenge is that processes cannot be mapped, only their results or effects. In this study, a district-scale (1:100,000) investigation is considered appropriate given the scarcity of geological information and the absence of world-renowned gold deposits in southwestern Uganda. At this scale of orogenic gold mineral systems understanding, evidence for the source of gold, active pathways and the physical traps are considered critical. Following the mineral system approach, these processes critical to orogenic gold systems are translated into district-scale mappable proxies using available regional-scale datasets. Tectono-stratigraphic domains, mantle indicators and gold occurrences represent the "source of gold" as a critical process. Zones of hydrothermal alteration were extracted from radiometric data, structures involved in the orogenies and terrane contacts were extracted to represent the active pathway as a critical process and finally the physical throttle is represented by rheological contrasts and geological complexity. Then, the knowledge-driven multi-class index overlay method was used to integrate predictor layers representing those processes in order to model orogenic gold prospectivity into a single map. Weighting of the predictor layers, prior to integration, occurs at the level of the critical process and takes into account the relative importance of the critical process mineralisation, the representativeness of a proxy and the accuracy of the proxy. The resultant prospectivity model shows that 83% of all gold occurrences are delineated within predicted prospective areas covering 30% of the study area. Eight sub-areas, covering 2500 km2, have been recommended for follow-up exploration. © 2014. Source


Trademark
Randgold Resources | Date: 2015-11-16

Precious metals and their alloys and goods in precious metals or coated therewith, not included in other classes, including gold, silver and platinum; jewellery; precious stones. Mining services including mining extraction services, building and construction of prospecting equipment; construction; construction engineering; demolition and site clearance; installation, maintenance, repair and servicing of mining equipment and machinery. Specialist consultancy, advisory and research services in the field of geophysical exploration and mining; technological research and advisory services relating to mining, mining machinery and equipment and geological prospecting, specialist mining and prospecting services in this class.

Discover hidden collaborations